精英家教网 > 高中数学 > 题目详情
3.若等差数列{an}的前n项和为Sn,a2=3,a3+a5=-2,则使得Sn取最大值时的正整数n=3.

分析 利用等差数列的通项公式可得an,令an>0,解得n即可得出.

解答 解:设等差数列{an}的公差为d,∵a2=3,a3+a5=-2,
∴a1+d=3,2a1+6d=-2,
解得a1=5,d=-2.
∴an=5-2(n-1)=7-2n,
令an=7-2n>0,解得n$<\frac{7}{2}$,
因此n=3时,使得Sn取最大值.
故答案为:3.

点评 本题考查了等差数列通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,其中一等品的件数记为随机变量X,则X的数学期望E(X)=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l1:x-2y+3=0和l2:x+2y-9=0的交点为A.
(1)求过点A,且与直线2x+3y-1=0平行的直线方程;
(2)求过点A,且倾斜角为直线l1倾斜角2倍的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的标报名方法共有(  )
A.4种B.16种C.64种D.256种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个口袋里装有5个不同的红球,7个不同的黑球,若取出一个红球记2分,取出一个黑球记1分,现从口袋中取出6个球,使总分低于8分的取法种数为112(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.水培植物需要一种植物专用营养液.已知每投放a(1≤a≤4且a∈R)个单位的营养液,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=af(x),其中f(x)=$\left\{\begin{array}{l}{\frac{4+x}{4-x}(0≤x≤2)}\\{\;}\\{5-x(2<x≤5)}\end{array}\right.$,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次4个单位的营养液,则有效时间可能达几天?
(2)若先投放2个单位的营养液,3天后投放b个单位的营养液.要使接下来的2天中,营养液能够持续有效,试求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式|x+1|+|$\frac{1}{x}$-1|≤a有解,则实数a的取值范围是(  )
A.a≥2B.a<2C.a≥1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,C=$\frac{π}{3}$,若$\overrightarrow{m}$=(c-$\sqrt{6}$,a-b),$\overrightarrow{n}$=(a-b,c+$\sqrt{6}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC的面积为(  )
A.3B.$\frac{9\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=xex+x2+2x+a恰有两个不同的零点,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{e}$+1]B.(-∞,$\frac{1}{e}$+1)C.($\frac{1}{e}$+1,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

同步练习册答案