精英家教网 > 高中数学 > 题目详情
18.空间中A,B,C,D,E五点不共面,已知A,B,C,D在同一平面内,点B,C,D,E在同一平面内,那么B,C,D三点(  )
A.一定构成三角形B.一定共线C.不一定共线D.与A,E共面

分析 由已知得B、C、D分别是两个平面的公共点,由公理二得B、C、D三点一定共线.

解答 解:∵空间中A,B,C,D,E五点不共面,
A,B,C,D在同一平面内,点B,C,D,E在同一平面内,
∴B、C、D∈α,且B、C、D∈β,
∴由公理二得B、C、D三点一定共线.
故选:B.

点评 本题考查三点位置关系的判断,是基础题,解题时要认真审题,注意公理二的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.三条直线l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能构成三角形,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知AB=4,BC=2,CA=3,试求cos∠ACB,试求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线3x+2y=2k+1与直线2x-y=3k的交点在第一象限内时,k的取值范围为(-$\frac{1}{8}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.能否由下列图象唯一地确定函数y=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的解析式?如果能.求出它的解析式;如果不能,请你加一个条件.确定它的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=logax(其中a为常数且a>0,a≠1),满足f($\frac{2}{a}$)>f($\frac{3}{a}$),则f(1-$\frac{1}{x}$)>1的解集是(1,$\frac{1}{1-a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,a、b、c分别是△ABC的三个内角A、B、C的对边,2b=c+2acosC.
(1)求A
(2)S△ABC=$\sqrt{3}$,a=$\sqrt{13}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a=3,$b=\sqrt{5}$,A=60°,则cosB=(  )
A.$±\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{15}}}{6}$C.$±\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{21}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果a<b<0,那么下列各式一定成立的是(  )
A.a-b>0B.ac<bcC.a2>b2D.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

同步练习册答案