精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中为自然对数的底数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

【答案】(1)(2)当时, ;当时, ;当时,

【解析】试题分析;1通过时,化简求出函数的导数求出切线的斜率以及切点坐标然后求解切线方程;2求出函数的导数,通过利用新函数的导数利用上的单调性,推出时,推出时,通过导数求解.

试题解析:(Ⅰ) 时,

∴曲线在点处的切线方程为

(Ⅱ)

(1)当时,∵ ,∴恒成立,

, 上单调递增,

所以.

(2)当时,∵ ,∴恒成立,

, 上单调递减,

所以.

(3)当时,

上单调递减,在上单调递增,

所以

综上所述,当时, ;当时, ;当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是R上的奇函数,且的图象关于对称,当时,

(Ⅰ)当 时,求的解析式;

(Ⅱ)计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数,在同一直角坐标系中f(x)与g(x)相同的一组是(
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1、F2是椭圆C1+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是
(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

)当时,求函数上的最大值和最小值;

)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,且AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1.

(Ⅰ)证明:AC平分∠BAD;

(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (a>0且a≠1)是定义域为R的奇函数.

(Ⅰ)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;

(Ⅱ)若f(1)= ,且g(x)=a2xa-2x-4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=cos2x+ sin2x的图象向左平移m(其中m>0)个单位,所得图象关于y轴对称,则m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

同步练习册答案