精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.

(1)求圆心P的轨迹方程;

(2)若P点到直线y=x的距离为,求圆P的方程.


解:(1)设P(x,y),圆P的半径为r.

由题设y2+2=r2,x2+3=r2,

从而y2+2=x2+3.

故P点的轨迹方程为y2-x2=1.

(2)设P(x0,y0).

由已知得=.

又P点在双曲线y2-x2=1上,

从而得

此时,圆P的半径r=.

此时,圆P的半径r=.

故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知双曲线-=1(a>0,b>0),过其右焦点F且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为(  )

(A) (B)

(C) (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆E: +=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.

(1)求椭圆E的方程;

(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,已知抛物线C1:x2+by=b2经过椭圆C2: +=1(a>b>0)的两个焦点.

(1)求椭圆C2的离心率;

(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )

(A) - =1 (B) -=1

(C) -=1 (D) -=1

查看答案和解析>>

科目:高中数学 来源: 题型:


如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.

(1)求r的取值范围;

(2)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:


过双曲线-=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于点P,若T为线段FP的中点,则该双曲线的渐近线方程为(  )

(A)x±y=0        (B)2x±y=0

(C)4x±y=0  (D)x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:


一个总体中的80个个体编号为0,1,2,…,79,并依次将其分为8个组,组号为0,1,…,7,要用(错位)系统抽样的方法抽取一个容量为8的样本.即规定先在第0组随机抽取一个号码,记为i,依次错位地得到后面各组的号码,即第k组中抽取个位数字为ik(当ik<10)或ik-10(当ik≥10)的号码.在i=6时,所抽到的8个号码是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为X的函数;

(2)根据直方图估计利润T不少于57 000元的概率.

查看答案和解析>>

同步练习册答案