| A. | M+N=8 | B. | M+N=10 | C. | M-N=8 | D. | M-N=10 |
分析 将f(x)分解成f(x)=5+h(x)+g(x),分别求出g(x)和h(x)的最大值、最小值的和,从而求出M+N的值即可.
解答 解:$f(x)=\frac{5{a}^{x}+3}{{a}^{x}+1}+ln(\sqrt{1+4{x}^{2}}-2x)(-1≤x≤1)$,
令g(x)=ln($\sqrt{1+{4x}^{2}}$-2x),x∈[-1,1],
由g(-x)=ln($\sqrt{1+{4x}^{2}}$+2x)=ln$\frac{1}{\sqrt{1+{4x}^{2}}-2x}$
=-ln($\sqrt{1+{4x}^{2}}$-2x)=-g(x),
可知g(-x)=-g(x),
故g(x)函数的图象关于原点对称,
设g(x)的最大值是a,则g(x)的最小值是-a,
由$\frac{{5a}^{x}+3}{{a}^{x}+1}$=5-$\frac{2}{{a}^{x}+1}$,
令h(x)=-$\frac{2}{{a}^{x}+1}$,
0<a<1时,h(x)在[-1,1]递减,
h(x)的最小值是h(-1)=-$\frac{2a}{a+1}$,
h(x)的最大值是h(1)=-$\frac{2}{a+1}$,
故h(-1)+h(1)=-2,
∴f(x)的最大值与最小值的和是10-2=8,
a>1时,h(x)在[-1,1]递增,
h(x)的最大值是h(-1)=-$\frac{2a}{a+1}$,
h(x)的最小值是h(1)=-$\frac{2}{a+1}$,
故h(-1)+h(1)=-2,
故函数f(x)的最大值与最小值之和为8,
综上:函数f(x)的最大值与最小值之和为8,
故选:A.
点评 本题考查了函数的单调性、奇偶性问题,考查函数的最值问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com