精英家教网 > 高中数学 > 题目详情
用反证法证明:设a、b、c都是正数,则三个数a+
1
b
,b+
1
c
,c+
1
a
中至少有一个不小于2.
考点:综合法与分析法(选修)
专题:证明题,反证法
分析:假设a+
1
b
,b+
1
c
,c+
1
a
都小于2,则a+
1
b
+b+
1
c
+c+
1
a
<6.再结合基本不等式,引出矛盾,即可得出结论.
解答: 证明:假设a+
1
b
,b+
1
c
,c+
1
a
都小于2,则a+
1
b
+b+
1
c
+c+
1
a
<6.
∵a、b、c∈R+
∴a+
1
b
+b+
1
c
+c+
1
a
=a+
1
a
+
1
b
+b+
1
c
+c≥2+2+2=6,矛盾.
∴a+
1
b
,b+
1
c
,c+
1
a
中至少有一个不小于2.
点评:用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二阶矩阵M对应的变换将点O,A,B,C分别变成点O,A′,B′,C′,其中O为坐标原点,A(2,0),B(2,1),C(0,1),A′(2,1),B′(2,2).求矩阵M及点C′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值,写出计算过程
(1)4x
1
4
(-3x
1
4
y-
1
3
)÷(-6x-
1
2
y-
2
3
);
(2)(lg5)2+lg50•lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-16x+c+3,
(Ⅰ)若函数f(x)在区间[-1,1]上存在零点,求实数c的取值范围;
(Ⅱ)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?若存在,请求出t的值;若不存在,请说明理由(注:[a,b]的区间长度为b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,PA=1.
(Ⅰ)求证:平面PBC⊥平面PAB;
(Ⅱ)求点C到平面PBD的距离.
(Ⅲ)求PC与平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),(n∈N*
(1)求通项an
(2)设bn=|
Sn
n
-3n+20|,求数列{bn}前n项和Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-x2-3ax+b.
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1=2,a4=16,
(1)若a3,a5分别是等差数列{bn}的第3项和第5项,求数列{bn}的通项公式;
(2)设cn=an+bn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=5和点A(1,2),则过点A且与圆O相切的直线方程是
 

查看答案和解析>>

同步练习册答案