精英家教网 > 高中数学 > 题目详情
17.直线l与圆锥曲线C相交于A,B两点,与x轴、y轴分别交于D、E两点,且满足$\overrightarrow{EA}$=λ1$\overrightarrow{AD}$、$\overrightarrow{EB}$=λ2$\overrightarrow{BD}$.已知直线l:x=my+1(m>1),椭圆C:$\frac{{x}^{2}}{2}$+y2=1,求$\frac{1}{{λ}_{1}}$+$\frac{1}{{λ}_{2}}$的取值范围.

分析 联立方程组,利用消元法结合根与系数之间的关系,推出λ12=-4,即可得到结论.

解答 解:联立方程组$\left\{\begin{array}{l}{x=my+1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$:得(m2+2)y2+2my-1=0,
得y1+y2=-$\frac{2m}{{m}^{2}+2}$,y1y2=-$\frac{1}{{m}^{2}+2}$,
又点D(1,0),E(0,-$\frac{1}{m}$),
由$\overrightarrow{EA}$=λ1$\overrightarrow{AD}$ 得到y1+$\frac{1}{m}$=-λ1y1,λ1=-(1+$\frac{1}{m}•\frac{1}{{y}_{1}}$),
同理由$\overrightarrow{EB}$=λ2$\overrightarrow{BD}$得到y2+$\frac{1}{m}$=-λ2y,λ2=-(1+$\frac{1}{m}•\frac{1}{{y}_{2}}$),
λ12=-(2+$\frac{1}{m}$$•\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$)=-(2+$\frac{1}{m}$•2m)=-4,
即λ12=-4,
$\frac{1}{{λ}_{1}}$+$\frac{1}{{λ}_{2}}$=$-\frac{4}{{λ}_{1}{λ}_{2}}$=$\frac{4}{{{λ}_{1}}^{2}+4{λ}_{1}}$=$\frac{4}{({λ}_{1}+2)^{2}-4}$,
因为m>1,
所以点A在椭圆上位于第三象限的部分上运动,由分点的性质可知
${λ}_{1}∈(\sqrt{2}-2,0)$,
所以$\frac{1}{{λ}_{1}}$+$\frac{1}{{λ}_{2}}$∈(-∞,-2).

点评 本题主要考查直线和圆锥曲线的位置关系的应用,利用消元法转化为一元二次方程,根据根与系数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在梯形ABCD中,AB∥CD,M、N分别是$\overrightarrow{DA}$,$\overrightarrow{BC}$的中点,且$\frac{DC}{AB}$=k,设$\overrightarrow{AD}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AB}$=$\overrightarrow{{e}_{2}}$,以$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为基底表示向量$\overrightarrow{DC}$,$\overrightarrow{BC}$,$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平行四边形ABCD中,AC=10,BD=12,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=-11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在四边形ABCD中,∠BAD=90°,∠ADC=120°,AD=DC=2,AB=4,动点M在△BCD内(含边界)运动,设$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的取值范围是[1,$\frac{\sqrt{3}}{4}+\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个命题:
①已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2
②回归直线就是散点图中经过样本数据点最多的那条直线
③命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
④已知点A(-1,0),B(1,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设△ABC的角A、B、C的对边长分别为a,b,c,P是△ABC所在平面上的一点,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{c}{b}$$\overrightarrow{PA}$•$\overrightarrow{PC}$+$\frac{b-c}{b}$$\overrightarrow{PA}$2=$\frac{c}{a}$$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\frac{a-c}{a}$$\overrightarrow{PB}$2,则点P是△ABC的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在下列向量组中,可以把向量$\overrightarrow{a}$=(2,3)表示成$λ\overrightarrow{{e}_{1}}$+$μ\overrightarrow{{e}_{2}}$(λ,μ∈R)的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(2,1)B.$\overrightarrow{{e}_{1}}$=(3,4),$\overrightarrow{{e}_{2}}$=(6,8)
C.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2)D.$\overrightarrow{{e}_{1}}$=(1,-3),$\overrightarrow{{e}_{2}}$=(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>1,b<1,求证:a+b>1+ab.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的方程|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|-kx-1=0有五个互不相等的实根,则k的取值范围是(  )
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)C.(-∞,-$\frac{1}{8}$)∪($\frac{1}{8}$,+∞)D.(-$\frac{1}{8}$,0)∪(0,$\frac{1}{8}$)

查看答案和解析>>

同步练习册答案