精英家教网 > 高中数学 > 题目详情
2.某几何体的三视图如图,该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

分析 通过观察几何体的三视图,可得该几何体是一个四棱锥,计算即得结论.

解答 解:根据几何体的三视图,得该几何体是一个四棱锥,
其底面为边长为1的正方形,高为2,
∴该四棱锥的体积为V四棱锥=$\frac{1}{3}$×1×1×2=$\frac{2}{3}$,
故选:B.

点评 本题主要考查几何体的体积,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列函数中,在其定义域内既是偶函数又在(-∞,0)上单调递增的函数是(  )
A.f(x)=x2B.f(x)=-log2|x|C.f(x)=3|x|D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a、b、c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X=|a-b|,则X的均值EX为(  )
A.$\frac{8}{9}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{3}$x3-3x2+5x+9的极大值点为x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点(1,$\frac{1}{2}$)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆C的右焦点和上顶点
(Ⅰ)求椭圆C的方程和离心率;
(Ⅱ)点P为椭圆C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.则异面直线OB与MD所成角余弦值为$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角坐标系中,定义两点P(x1,y1)与Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+
|y1-y2|,现给出四个命题:
(1)已知P(1,3),Q(sin2α,cos2α)(α∈R),则d(P,Q)为定值;
(2)已知P,Q,R三点不共线,则必有d(P,Q)+d(Q,R)>d(P,R);
(3)用|PQ|表示P,Q两点间的距离,那么|PQ|≥$\frac{{\sqrt{2}}}{2}$d(P,Q);
(4)若P,Q是椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1上的任意两点,则d(P,Q)的最大值是2$\sqrt{13}$.
在以上命题中,你认为正确的命题有①③④.(只填写所有正确的命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=alnx+$\frac{1}{x}$(a≠0)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若存在两条直线y=ax+b1,y=ax+b2(b1≠b2)都是曲线y=f(x)的切线.求实数a的取值范围;
(Ⅲ)若|x|f(x)≤0}⊆(0,1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是R上的减函数,且y=f(x-2)的图象关于点(2,0)成中心对称.若不等式f(a+sinθ)+f(2+cos2θ)≥0 对任意θ∈R恒成立,则a的取值范围是(-∞,-$\frac{25}{8}$].

查看答案和解析>>

同步练习册答案