精英家教网 > 高中数学 > 题目详情
不共面的4个点中能否有3个点共线?为什么?
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:假设能有,结合公理3以及推论可以推出矛盾.
解答: 解:不能;
假设不共面的4个点中3个点能共线,根据平面的基本性质得到四个点共面,与已知矛盾.
所以不共面的4个点中不能有3个点共线.
点评:本题考查了平面公理3以及推论的应用,主要利用公理3的作用和公理中的关键条件进行判断,考查了空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A、90cm3
B、95.5cm3
C、102cm3
D、104cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A、y=
1
x
B、y=x3
C、y=ex
D、y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,a2=2,an+2=(1+cos2
2
)an+sin2
2
,n∈N*,{an}的前n项和为Sn,则S2n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足(an+1)(1-an+1)=2,则a2013a2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

|x-a|+
1
x
1
2
对一切x>0恒成立,则a的范围(  )
A、a≤2
B、a
3
2
C、a≤1
D、a
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1),
n
=(cosx,
3
2
),f(x)=(
m
+
n
)•
m

(1)当x∈[0,
π
2
]时,求函数f(x)的值域:
(2)锐角△ABC中,a,b,c分别为角A,B,C的对边,若f(
B
2
)=
3
2
10
,b=7
2
,a=
4
2
5
c,求边a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,且f(1)=3
(1)求a的值;
(2)判断函数f(x)在(
2
,+∞)
上是增函数还是减函数?并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=Asin(ωx+φ)+1(x∈R,A>0,ω>0,0<φ<
π
2
)的周期开为π,且图象上的一个最低点为M(
3
,-1).
(1)求f(x)的解析式;
(2)已知f(
α
2
)=
1
3
,α∈[0,π],求cosα的值.

查看答案和解析>>

同步练习册答案