分析 (1)要证不论λ为何值,总有EF⊥平面ABC,只需证CD⊥平面ABC,在△BCD中,根据∠BCD=90°得证.
(2)根据$V=\frac{1}{3}{S_{△AEB}}•EF=\frac{1}{3}•\frac{{\sqrt{6}}}{2}•{λ^2}=\frac{{\sqrt{6}}}{12}$,即可求此时λ的值.
解答
(I)证明:因为AB⊥平面BCD,所以AB⊥CD,
又在△BCD中,∠BCD=90°,所以,BC⊥CD,又AB∩BC=B,
所以,CD⊥平面ABC,
又在△ACD,E、F分别是AC、AD上的动点,且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1)
所以,不论λ为何值,总有EF⊥平面ABC…(6分)
(II)解:$|BD|=\sqrt{|BC{|^2}+|CD{|^2}}=\sqrt{2}$,$|AB|=\sqrt{3}|BD|=\sqrt{6}$,${S_{△ABC}}=\frac{{\sqrt{6}}}{2}$.
${S_{△AEB}}=λ•{S_{△ABC}}=\frac{{\sqrt{6}}}{2}λ$,h=|EF|=λ•|CD|=λ,
所以$V=\frac{1}{3}{S_{△AEB}}•EF=\frac{1}{3}•\frac{{\sqrt{6}}}{2}•{λ^2}=\frac{{\sqrt{6}}}{12}$
解之得$λ=\frac{{\sqrt{2}}}{2}$…(12分)
点评 本题考查考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,4) | C. | (2,4) | D. | (4,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X1 | 6 | 7 | 8 | 9 | 10 |
| P | 0.16 | 0.14 | 0.42 | 0.1 | 0.18 |
| X2 | 6 | 7 | 8 | 9 | 10 |
| P | 0.19 | 0.24 | 0.12 | 0.28 | 0.17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com