精英家教网 > 高中数学 > 题目详情
16.如图,已知ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别AC,AD是上的动点,且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(Ⅰ)求证:不论λ为何值,总有EF⊥平面ABC;
(Ⅱ)若三棱锥A-BEF的体积为$\frac{{\sqrt{6}}}{12}$,求此时λ的值.

分析 (1)要证不论λ为何值,总有EF⊥平面ABC,只需证CD⊥平面ABC,在△BCD中,根据∠BCD=90°得证.
(2)根据$V=\frac{1}{3}{S_{△AEB}}•EF=\frac{1}{3}•\frac{{\sqrt{6}}}{2}•{λ^2}=\frac{{\sqrt{6}}}{12}$,即可求此时λ的值.

解答 (I)证明:因为AB⊥平面BCD,所以AB⊥CD,
又在△BCD中,∠BCD=90°,所以,BC⊥CD,又AB∩BC=B,
所以,CD⊥平面ABC,
又在△ACD,E、F分别是AC、AD上的动点,且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1)
所以,不论λ为何值,总有EF⊥平面ABC…(6分)
(II)解:$|BD|=\sqrt{|BC{|^2}+|CD{|^2}}=\sqrt{2}$,$|AB|=\sqrt{3}|BD|=\sqrt{6}$,${S_{△ABC}}=\frac{{\sqrt{6}}}{2}$.
${S_{△AEB}}=λ•{S_{△ABC}}=\frac{{\sqrt{6}}}{2}λ$,h=|EF|=λ•|CD|=λ,
所以$V=\frac{1}{3}{S_{△AEB}}•EF=\frac{1}{3}•\frac{{\sqrt{6}}}{2}•{λ^2}=\frac{{\sqrt{6}}}{12}$
解之得$λ=\frac{{\sqrt{2}}}{2}$…(12分)

点评 本题考查考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=x3-x2+x-2图象在与y轴交点处的切线与两坐标轴围成三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商店有标号为0到9的10个气球
(Ⅰ)若从10个气球中任取4个气球,将取出4个气球的编号放在一起构成一个四位数,则构成的四位数中25的倍数共有多少个?
(Ⅱ)现从中取4个气球,恰有2个气球上的数字相邻的取法有多少仲?
(Ⅲ)若把10个气球挂成如下4列的形式,作为射击的靶子,规定每次只能射击每列最下面的一个(每次都能击中且射中后这个气球就会爆炸),把10个气球全部击中有几种不同的射击方案?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在正三棱柱ABC-A1B1C1中,P、Q、R分别是BC、CC1、A1C1的中点,作出过三点P、Q、R截正三棱柱的截面并说出该截面的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱锥S-ABC中,已知SA⊥BC,SA=BC=a,SA⊥DE,BC⊥DE,且DE=b,求三棱锥S-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知2件次品和a件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出a件正品时检测结束,已知前两次检测都没有检测出次品的概率为$\frac{3}{10}$.
(1)求实数a的值;
(2)若每检测一件产品需要费用100元,设x表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求x的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义一种新运算:a?b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$,已知函数f(x)=(1+$\frac{4}{x}$)?log2x,若函数g(x)=f(x)-k恰有两个零点,则k的取值范围为(  )
A.(1,2)B.(1,4)C.(2,4)D.(4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由1,2,3,4,7这五个数字可以组成72个没有重复数字的五位奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两名射手在同一条件下射击,所得环数X1,X2的分布列分别为
 X1 610 
 P 0.160.14 0.42 0.1 0.18 
 X2 6 710 
 P 0.190.24 0.12 0.28 0.17 
根据环数的均值和方差比较这两名射手的射击水平.

查看答案和解析>>

同步练习册答案