精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,sinB+sinC=
3
sinA,△ABC的面积S=
4
3
sinA,则角A=
 
考点:正弦定理,余弦定理
专题:解三角形
分析:已知等式利用正弦定理化简得到b+c=
3
a,把a的值代入求出b+c的值,利用三角形面积公式列出关系式,把已知面积代入求出bc的值,利用余弦定理求出cosA的值,即可确定出A的度数.
解答: 解:把sinB+sinC=
3
sinA,利用正弦定理化简得:b+c=
3
a,
将a=2代入得:b+c=2
3

∵△ABC面积S=
1
2
bcsinA=
4
3
sinA,
∴bc=
8
3

由余弦定理得:cosA=
b2+c2-a2
2bc
=
(b+c)2-2bc-4
2bc
=
12-
16
3
-4
16
3
=
1
2

则A=60°.
故答案为:60°
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图为函数f(x)=Asin(ωx+ϕ)+c(A>0,ω>0,0<ϕ<2π)图象的一部分.
(1)求函数f(x)的解析式,并写出f(x)的振幅、周期、初相;
(2)求使得f(x)>
5
2
的x的集合;
(3)函数f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

一组数据x1,x2,…,x8的值如表,则数据2x1+1,2x2+1,…,2x8+1的方差为
 

100999897101103102100

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在x=a的导数为m,则
lim
△x→0
f(a+2△x)-f(a-2△x)
△x
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4x+
a
x
在区间[2,+∞)上是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
lim
x→∞
(e-2xcosx)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1080的不同的正约数共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且
3
asinB=bcosA.
(1)求角A的大小;
(2)若a=1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos45°cos15°+sin15°sin45°的值为
 

查看答案和解析>>

同步练习册答案