分析 由题意可得△ABO为等边三角形,∠AOB=60°,由圆的性质可得∠APB=30°,在△PAB中,运用余弦定理和基本不等式,即可得到|AP|•|BP|的最大值,即有$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值,无最小值.
解答
解:如图单位圆上三点P,A,B,|AB|=1,
△ABO为等边三角形,∠AOB=60°,
由圆的性质可得∠APB=30°,
在△PAB中,由余弦定理可得|AB|2=|AP|2+|BP|2-2|AP|•|BP|cos30°,
即有1═|AP|2+|BP|2-$\sqrt{3}$|AP|•|BP|≥2|AP|•|BP|-$\sqrt{3}$|AP|•|BP|
=(2-$\sqrt{3}$)|AP|•|BP|,则|AP|•|BP|≤2+$\sqrt{3}$,
当且仅当|PA|=|PB|=$\frac{\sqrt{2}+\sqrt{6}}{2}$,取得等号.
即有$\overrightarrow{PA}$•$\overrightarrow{PB}$=|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|•cos30°=$\frac{\sqrt{3}}{2}$|AP|•|BP|≤$\sqrt{3}$+$\frac{3}{2}$,
则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为(0,$\sqrt{3}$+$\frac{3}{2}$].
故答案为:(0,$\sqrt{3}$+$\frac{3}{2}$].
点评 本题考查向量的数量积的定义,考查圆的性质:同弧所对的圆周角为圆心角的一半,以及余弦定理和基本不等式的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com