精英家教网 > 高中数学 > 题目详情
9.已知点P是单位圆上一个定点,线段AB是单位圆的一条动弦,且AB=1,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为(0,$\sqrt{3}$+$\frac{3}{2}$].

分析 由题意可得△ABO为等边三角形,∠AOB=60°,由圆的性质可得∠APB=30°,在△PAB中,运用余弦定理和基本不等式,即可得到|AP|•|BP|的最大值,即有$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值,无最小值.

解答 解:如图单位圆上三点P,A,B,|AB|=1,
△ABO为等边三角形,∠AOB=60°,
由圆的性质可得∠APB=30°,
在△PAB中,由余弦定理可得|AB|2=|AP|2+|BP|2-2|AP|•|BP|cos30°,
即有1═|AP|2+|BP|2-$\sqrt{3}$|AP|•|BP|≥2|AP|•|BP|-$\sqrt{3}$|AP|•|BP|
=(2-$\sqrt{3}$)|AP|•|BP|,则|AP|•|BP|≤2+$\sqrt{3}$,
当且仅当|PA|=|PB|=$\frac{\sqrt{2}+\sqrt{6}}{2}$,取得等号.
即有$\overrightarrow{PA}$•$\overrightarrow{PB}$=|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|•cos30°=$\frac{\sqrt{3}}{2}$|AP|•|BP|≤$\sqrt{3}$+$\frac{3}{2}$,
则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为(0,$\sqrt{3}$+$\frac{3}{2}$].
故答案为:(0,$\sqrt{3}$+$\frac{3}{2}$].

点评 本题考查向量的数量积的定义,考查圆的性质:同弧所对的圆周角为圆心角的一半,以及余弦定理和基本不等式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,D、E分别是△ABC的边BC的三等分点,设$\overrightarrow{AB}$=m,$\overrightarrow{AC}$=n,∠BAC=$\frac{π}{3}$.
(1)用$\overrightarrow{m}$、$\overrightarrow{n}$分别表示$\overrightarrow{AD}$,$\overrightarrow{AE}$;
(2)若$\overrightarrow{AD}$•$\overrightarrow{AE}$=15,|$\overrightarrow{BC}$|=3$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-k|x|+(k-2)x,
(1)判定函数f(x)的奇偶性并说明理由;
(2)当k=2时画出函数f(x)在[-3,3]上的简图,并写出单调区间;
(3)若关于x的方程x2-2|x|=a有四个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,过点M(-2,0)作直线1交双曲线x2-y2=1于A,B两点,0为原点,以OA,OB为一组邻边作平行四边形OAPB.
(1)试求点P的轨迹方程;
(2)是否存在这样的直线l,使四边形OAPB为矩形,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a为实数,f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求a的值,使f(x)的图象关于原点对称;
(2)上述函数是否具有单调性,如果具有单调性,试求出单调区间并加以证明,如果没有单调性,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{k},n=2k}\end{array}\right.$(k∈N*),设f(n)=a1+a2+…+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,则f(2016)-f(2015)=42015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ax-a2(a>0且a≠1)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.cos4x-sin4x+2sin2x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}为等差数列,且各项均不为0,Tn为其前n项和,T2n-1=an2,n∈N+,若不等式$\frac{{4×{{({-1})}^n}}}{n}+1≥\frac{{t{{({-1})}^{n+1}}}}{{{a_{n+1}}}}$对任意的正整数n恒成立,则t的取值集合为{-15,-9}.

查看答案和解析>>

同步练习册答案