| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum _{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum _{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum _{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum _{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
分析 (Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=$\sqrt{x}$,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;
(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,
(ii)求出预报值得方程,根据函数的性质,即可求出.
解答 解:(Ⅰ)由散点图可以判断,y=c+d$\sqrt{x}$适宜作为年销售量y关于年宣传费x的回归方程类型;
(Ⅱ)令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于$\widehat{d}$=$\frac{108.8}{1.6}$=68,
$\widehat{c}$=$\overline{y}$-$\widehat{d}$$\overline{w}$=563-68×6.8=100.6,
所以y关于w的线性回归方程为$\widehat{y}$=100.6+68w,
因此y关于x的回归方程为$\widehat{y}$=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值$\widehat{y}$=100.6+68$\sqrt{49}$=576.6,
年利润z的预报值$\widehat{z}$=576.6×0.2-49=66.32,
(ii)根据(Ⅱ)的结果可知,年利润z的预报值$\widehat{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
当$\sqrt{x}$=$\frac{13.6}{2}$=6.8时,即当x=46.24时,年利润的预报值最大.
点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?n∈N*,f(n)∉N*且f(n)>n | B. | ?n∈N*,f(n)∉N*或f(n)>n | ||
| C. | ?n0∈N*,f(n0)∉N*且f(n0)>n0 | D. | ?n0∈N*,f(n0)∉N*或f(n0)>n0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 乙 | 丙 | 丁 | |
| 100 | √ | × | √ | √ |
| 217 | × | √ | × | √ |
| 200 | √ | √ | √ | × |
| 300 | √ | × | √ | × |
| 85 | √ | × | × | × |
| 98 | × | √ | × | × |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |x|=x|sgnx| | B. | |x|=xsgn|x| | C. | |x|=|x|sgnx | D. | |x|=xsgnx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}+π$ | B. | $\frac{2}{3}+π$ | C. | $\frac{1}{3}+2π$ | D. | $\frac{2}{3}+2π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{2}$ | B. | $\frac{49}{2}$ | C. | 12 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com