精英家教网 > 高中数学 > 题目详情

【题目】整数n使得多项式f(x)=3x3nxn2,可以表示为两个非常数整系数多项式的乘积,所有n的可能值的和为______ .

【答案】192

【解析】

由题意知f(x)=(ax2+bx+c)(dx+e),其中abcde均为整数,且不妨设(ad)=(13)(31).

(ad)=(13),则-5=f(1)=(1b+c)(3+e),所以,得e=2248

,有3|e,矛盾.

(ad)=(31),一方面由-5=f(1)(e1)|(5),有e=4026

另一方面f(e)=0,得3e3nen2=0,故可以求得n的值为38,-226130.

所以所求之和为192.

故答案为:192

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2若函数有两个零点分别记为

的取值范围;

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为2.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知成等差数列,且

1)求数列的通项公式;

2)记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,四边形是正方形,点分别是棱的中点,.

1)求证:

2)求二面角的余弦值;

3)若点在棱上,且,判断平面与平面是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

1)求椭圆的标准方程;

2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为,左,右焦点分别为,上顶点为A是面积为4的直角三角形.

1)求椭圆的标准方程;

2)过作直线与椭圆交于PQ两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果方程y|y|1所对应的曲线与函数yfx)的图象完全重合,那么对于函数yfx)有如下结论:

①函数fx)在R上单调递减;

yfx)的图象上的点到坐标原点距离的最小值为1

③函数fx)的值域为(﹣∞,2]

④函数Fx)=fx+x有且只有一个零点.

其中正确结论的序号是_____.

查看答案和解析>>

同步练习册答案