精英家教网 > 高中数学 > 题目详情
6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=8,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°.计算:
(1)($\overrightarrow{a}$$+2\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$);
(2)|4$\overrightarrow{a}$-2$\overrightarrow{b}$|

分析 (1)直接利用向量的数量积的运算法则化简求解即可.
(2)利用向量的模的求法否则化简求解即可.

解答 解:(1)|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=8,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°.
($\overrightarrow{a}$$+2\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=2${\overrightarrow{a}}^{2}$+3$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=2×16+3×$4×8×(-\frac{\sqrt{3}}{2})$-2×64=-96-48$\sqrt{3}$;
(2)|4$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{16{\overrightarrow{a}}^{2}-16\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$=$\sqrt{16×16+16×4×8×\frac{\sqrt{3}}{2}+4×64}$=8$\sqrt{8+4\sqrt{3}}$=16$\sqrt{2+\sqrt{3}}$.

点评 本题考查平面向量的数量积的运算,向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某公司为员工采购两年年终奖品,要求平板电脑的数量至多比手机多5部,预算经费12万,已知手机4千元一部,平板3千元一部,采购的手机和平板电脑的数量分别为x,y
(Ⅰ)请列出x,y满足的数学关系式,并在所给的坐标系中画出相应的平面区域;
(Ⅱ)在上述条件下该公司最多采购多少部奖品.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设bn=$\frac{4}{(n+1)^{2}-1}$(n∈N*),求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)在区间(-∞,+∞)上单调递增,点P(-2,2)在f(x)图象上,则f(x)<2的解集为{x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.把函数y=3sin2x+$\sqrt{3}$sinxcosx+4cos2x化成y=Asin(ωx+φ)+B的形式,并求出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角;
(1)-54°18′(2)395°8′;(3)-1190°30′.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.函数y=2x2-x+1在(0,+∞)上是增函数
B.幂函数在(0,+∞)上都是增函数
C.函数y=log2(x+$\sqrt{{x}^{2}+1}$)既不是奇函数,也不是偶函数
D.已知f(x)是定义在R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于曲线C所在平面内的点O,若存在以O为顶点的角θ,使得θ≥∠AOB对于曲线C上的任意两个不同点A、B恒成立,则称θ为曲线C相对于O的“界角”,并称最小的“界角”为曲线C相对于O的“确界角”,已知曲线M:y=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2}},x≤0}\\{1+x{e}^{x-1},x>0}\end{array}\right.$,(其中e为自然对数的底数),O为坐标原点,则曲线M相对于O的“确界角”为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算:cos24°cos36°-cos66°cos54°=(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案