精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow m=(f(x),2cosx),\;\;\overrightarrow n=(sinx+cosx,1)$且$\overrightarrow m\;\;∥\;\;\overrightarrow n$.
(1)求函数f(x)的解析式.
(2)若函数f(x)的图象向下方平移1个单位,然后保持纵坐标不变,横坐标缩小到原来的一半,得到函数g(x)的图象.求函数g(x)在$x∈[0,\frac{π}{8}]$上的最大值及相应的x值.

分析 (1)利用向量平行的结论,可得函数f(x)的解析式.
(2)利用图象变换,求出g(x),再求函数g(x)在$x∈[0,\frac{π}{8}]$上的最大值及相应的x值.

解答 解:(1)由题意,f(x)=2cosx(sinx+cosx)=sin2x+cos2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1;
(2)若函数f(x)的图象向下方平移1个单位,然后保持纵坐标不变,横坐标缩小到原来的一半,得到函数g(x)=$\sqrt{2}$sin(4x+$\frac{π}{4}$),
$x∈[0,\frac{π}{8}]$,则4x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴函数g(x)在$x∈[0,\frac{π}{8}]$上的最大值为$\sqrt{2}$,此时x=$\frac{π}{16}$.

点评 本题考查向量平行结论的运用,考查图象变换,考查三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,AB=BC=$\frac{1}{2}$CD,E为AA1的中点.
(1)证明:BE∥CD1
(2)若∠ADC=45°,CD=CC1,求证:平面EB1C1⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若tanα=4sin420°,则tan(α-60°)的值为(  )
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{7}$D.$\frac{\sqrt{3}}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.6π+1B.$\frac{{({24+\sqrt{2}})π}}{4}+1$C.$\frac{{({23+\sqrt{2}})π}}{4}+\frac{1}{2}$D.$\frac{{({23+\sqrt{2}})π}}{4}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某地政府在该地一水库上建造一座水电站,用泄流水量发电,如图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120],历年中日泄流量在区间[30,60)的年平均天数为156天,一年按364天计.
(1)请把频率直方图补充完整;
(2)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才能够运行一台发电机,如60≤X<90时才够运行两台发电机,若运行一台发电机,每天可获利润4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据.问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,使得|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|成立的一个充分非必要条件是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$+2$\overrightarrow{b}$=0C.$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=0D.2$\overrightarrow{a}$+$\overrightarrow{b}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M={x|x2-3x=0},N={x|x>-1},则M∩N=(  )
A.(-1,0)B.(0,3)C.{0,3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=60°,b=7,sinA-sinC=$\frac{3\sqrt{3}}{14}$.
(Ⅰ)求a;
(Ⅱ)求cos(2A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$右焦点为F,P为双曲线左支上一点,点$A(0,\sqrt{2})$,则△APF周长的最小值为4(1+$\sqrt{2}$).

查看答案和解析>>

同步练习册答案