精英家教网 > 高中数学 > 题目详情
4.已知集合M={x|x2-3x=0},N={x|x>-1},则M∩N=(  )
A.(-1,0)B.(0,3)C.{0,3}D.{3}

分析 求出M方程的解集确定出M,找出两集合的交集即可.

解答 解:集合M={x|x2-3x=0}={0,3},N={x|x>-1},则M∩N={0,3},
故选:C

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.f(x)=asinx+bx3+1,若f(-2)=2,则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在如图所示的空间几何体中,边长为2的正三角形ABC所在平面与正三角形ABE所在平面互相垂直,DE在平面ABE内的射影为∠AEB的平分线且DE与平面AEB所成的角为60°,DE=2.
(Ⅰ)求证:CD⊥平面ABC;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow m=(f(x),2cosx),\;\;\overrightarrow n=(sinx+cosx,1)$且$\overrightarrow m\;\;∥\;\;\overrightarrow n$.
(1)求函数f(x)的解析式.
(2)若函数f(x)的图象向下方平移1个单位,然后保持纵坐标不变,横坐标缩小到原来的一半,得到函数g(x)的图象.求函数g(x)在$x∈[0,\frac{π}{8}]$上的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列4个命题:
①直线y=kx+1一定与圆x2+y2=2相交;
②命题“?x0∈R,f(x0)>0”的否定为“?x∈R,f(x)<0”;
③可用二分法求所有函数零点的近似值;
④相关系数r的绝对值越小,回归直线模型拟合效果越好.
其中正确命题的序号为①(写出所有正确命题序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=x2-x-2的零点是2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x)+3f(-x)=log2(x+3),则f(1)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.拖延症总是表现在各种小事上,但日积月累,特别影响个人发展,某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:
有明显拖延症无明显拖延症合计
352560
301040
总计6535100
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d 
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题时百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.
(1)求出频率分布直方图中的a值,并求出这200的平均年龄;
(2)现在要从年龄较小的第1,2,3组用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有1人的年龄在第3组的概率;
(3)若要从所有参与调查的人(人数很多)中随机选出3人,记关注民生问题的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案