【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
![]()
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程
=
x+
,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间? 参考公式:回归直线
=bx+a,其中b=
=
,a=
﹣b
.
【答案】
(1)解:作出散点图如下:
![]()
(2)解:
=
(2+3+4+5)=3.5,
=
(2.5+3+4+4.5)=3.5,
=54,
xiyi=52.5
∴b=
=0.7,a=3.5﹣0.7×3.5=1.05,
∴所求线性回归方程为:y=0.7x+1.05
(3)解:当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).
∴加工10个零件大约需要8.05个小时
【解析】(1)根据表中所给的数据,可得散点图;(2)求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和a的值,写出线性回归方程.(3)将x=10代入回归直线方程,可得结论.
科目:高中数学 来源: 题型:
【题目】如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
,E、F分别是AB、PD的中点. ![]()
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】机器人
(阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.
下面的算法是寻找“
”中“比较大的数
”,现输入正整数“42,61,80,12,79,18,82,57,31,18“,从左到右依次为
,其中最大的数记为
,则
( )
![]()
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
=(sinx,cosx),
=(sinx,k),
=(﹣2cosx,sinx﹣k).
(1)当x∈[0,
]时,求|
+
|的取值范围;
(2)若g(x)=(
+
)
,求当k为何值时,g(x)的最小值为﹣
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行六面体ABCD﹣A′B′C′D′,其中AB=4,AD=3,AA′=3,∠BAD=90°,∠BAA′=60°,∠DAA′=60°,则AC′的长为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中常数
.
(1)若
在
上单调递增,求
的取值范围;
(2)令
,将函数
的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象.区间
满足:
在
上至少含有30个零点.在所有满足上述条件的
中,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=﹣f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:
①f(2015)>f(2014);
②函数f(x)在定义域上是周期为3的函数;
③直线x﹣3y=0与函数f(x)的图象有2个交点;
④函数f(x)的值域为[0,1).
其中不正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
关于直线
对称的圆为
.
(1)求圆
的方程;
(2)过点
作直线
与圆
交于
两点,
是坐标原点,是否存在这样的直线
,使得在平行四边形
中
?若存在,求出所有满足条件的直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com