精英家教网 > 高中数学 > 题目详情
1.已知二次函数f(x)=ax2+bx+c(a≠0).
(1)若函数y=f(x)的图象过原点,且|f(x)|≤1的解集为{x|-1≤x≤3},求f(x)的解析式;
(2)若x=-1,0,1时的函数值的绝对值均不大于1,当x∈[-1,1]时,求证:|ax+b|≤2.

分析 (1)由二次函数的图象和性质得到对称轴,由此得到未知量.
(2)由题意得到三个不等式,由函数y=ax+b在[-1,1]上单调,利用绝对值不等式的性质得到结论.

解答 解:(1)∵函数y=f(x)的图象过原点,
∴c=0
∵|f(x)|≤1的解集为{x|-1≤x≤3},
得到f(x)对称轴为x=1
得:b=-2a
∵|f(-1)|=1,|f(3)|=1
∴$\left\{\begin{array}{l}{a=\frac{1}{3}}\\{b=-\frac{2}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-\frac{1}{3}}\\{b=\frac{2}{3}}\end{array}\right.$
∴f(x)的解析式是f(x)=$\frac{1}{3}$x2-$\frac{2}{3}$x或f(x)=-$\frac{1}{3}$x2+$\frac{2}{3}$x或
证明:(2)由题意得,|f(0)=|c|≤1|
|f(1)|=|a+b+c|≤1
|f(-1)|=|a-b+c|≤1|
∵函数y=ax+b在[-1,1]上单调,
∴|ax+b|≤max{|a+b|,|-a+b|}
又∵|a+b|≤|a+b+c|+|-c|≤2
|a-b|≤|a-b+c|+|-c|≤2
∴|ax+b|≤2.

点评 本题考查不等式的证明,涉及绝对值不等式的性质,函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.投掷两枚骰子,则点数之和为5的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{18}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x∈R,x2>0”为真命题
C.命题“若x=y,则cosx=cosy”的逆否命题为真命题
D.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n,表示不同直线,α,β表示不同平面.则下列结论正确的是(  )
A.m∥α且n∥α,则m∥nB.m∥α且 m∥β,则α∥β
C.α∥β且 m?α,n?β,则m∥nD.α∥β且 a?α,则a∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知a=${∫}_{0}^{π}$(sinx-1+2cos2$\frac{x}{2}$)dx,如图,若三棱锥P-ABC的最长的棱PA=a,且PB⊥BA,PC⊥AC,则此三棱锥的外接球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{4π}{3}$C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆x2+y2=25和两定点A(-5,0),B(0,$\frac{5}{2}}$).若该圆上的点M满足MA⊥MB,则直线MA的斜率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,M为AB1的中点,△CMB1为等边三角形.
(1)证明:AC⊥BC1
(2)若BC=2,AB1=8,求C1M与平面ACB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数c是a,b的等差中项,则直线l:ax-by+c=0被圆x2+y2=9所截得弦长的取值范围为$[\sqrt{34},6]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin7°cos37°-sin83°sin37°的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案