精英家教网 > 高中数学 > 题目详情
8.已知数列{an},{bn}的各项均为正数,且对任意n∈N*,都有bn,an,bn+1成等差数列.an,bn+1,an+1成等比数列,且b1=6,b2=12.
(I)求证:数列$\left\{{\sqrt{a_n}}\right\}$是等差数列;
(Ⅱ)求.an,bn

分析 (I)由等差数列和等比数列的性质,结合等差数列的中项,即可证明数列$\left\{{\sqrt{a_n}}\right\}$是等差数列;
(Ⅱ)运用等差数列的通项公式,求出$\sqrt{{a}_{n}}$,可得an,再由(Ⅰ)中的结论,即可得到bn

解答 (I)证明:∵an,bn+1,an+1成等比数列
∴bn+12=an•an+1,(n∈N*
∴bn+1=$\sqrt{{a}_{n}{a}_{n+1}}$,
∴bn=$\sqrt{{a}_{n}{a}_{n-1}}$,(n≥2)
∵bn,an,bn+1成等差数列,
∴2an=bn+bn+1,(n∈N*
∴2an=$\sqrt{{a}_{n}{a}_{n-1}}$+$\sqrt{{a}_{n}{a}_{n+1}}$=$\sqrt{{a}_{n}}$($\sqrt{{a}_{n+1}}$+$\sqrt{{a}_{n-1}}$),(n≥2)
2$\sqrt{{a}_{n}}$=$\sqrt{{a}_{n-1}}$+$\sqrt{{a}_{n+1}}$,(n≥2),
∴数列{$\sqrt{{a}_{n}}$}是等差数列.
(Ⅱ)解:∵b1=6,b2=12,
∴2a1=b1+b2=18,即a1=9,
a2=$\frac{{{b}_{2}}^{2}}{{a}_{1}}$=$\frac{1{2}^{2}}{9}$=16,
∴数列$\left\{{\sqrt{a_n}}\right\}$的公差d=$\sqrt{{a}_{2}}$-$\sqrt{{a}_{1}}$=4-3=1,
$\sqrt{{a}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d=n+2,
即有an=(n+2)2
又n≥2时,bn=$\sqrt{{a}_{n}{a}_{n-1}}$=$\sqrt{(n+2)^{2}(n+1)^{2}}$
=(n+1)(n+2),
又b1=6适合上式.
∴bn=(n+1)(n+2).

点评 本题考查等差数列的证明,考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知实数x,y满足x>y,求证:2x+$\frac{1}{{x}^{2}-2xy+{y}^{2}}$≥2y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x-1>0},集合B={x|x≤3},则A∩B=(  )
A.(-1,3)B.(1,3]C.[1,3)D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥的侧面积为(  )
A.6+4$\sqrt{5}$B.9+2$\sqrt{5}$C.12+2$\sqrt{5}$D.20+2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=$\sqrt{3}$.
(Ⅰ)求三棱锥A-PCD的体积;
(Ⅱ)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出$\frac{BE}{BP}$的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥a({x-3}).\end{array}\right.$,若z=2x+y的最小值为0,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若某几何体的三视图如图所示,则此几何体的体积是$\frac{22}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴建立极坐标系.已知直线l的参数方程为$\left\{\begin{array}{l}{x=5-at}\\{y=-1-t}\end{array}\right.$(t为参数),圆C的极坐标系方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),若圆C关于直线l对称,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知顶点在原点的抛物线的焦点与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点F重合,过抛物线准线与x轴交点E作直线l与抛物线相交于两个不同的点M、N
(1)求抛物线的标准方程;
(2)当以线段MN为直径的圆经过点F时,求直线l的方程.

查看答案和解析>>

同步练习册答案