精英家教网 > 高中数学 > 题目详情
8.2sin2x-sinxcosx-cos2x=1的解集是{x|x=kπ+arctan2或x=kπ-$\frac{π}{4}$,k∈Z}.

分析 首先,化简所给方程,然后,分解因式,从而确定其解集.

解答 解:∵2sin2x-sinxcosx-cos2x=1=sin2x+cos2x
∴six2x-sinxcosx-2cos2x=0,
∴(sinx-2cosx)(sinx+cosx)=0
sinx-2cosx=0,或sinx+cosx=0
tanx=2或tanx=-1
解集是{x|x=kπ+arctan2或x=kπ-$\frac{π}{4}$,k∈Z}.
故答案为:{x|x=kπ+arctan2或x=kπ-$\frac{π}{4}$,k∈Z}.

点评 本题重点考查了同角三角函数基本关系式、反三角函数等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a=log${\;}_{\frac{1}{2}}$2,b=20.6,c=0.62,则a,b,c的大小关系为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=ax3-2bx+1在点(1,f(1))处的切线方程为y=-x+2,则a+2b=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数 f (x) 对任意x∈R都有f(x)+f(1-x)=2011.
(1)求 f($\frac{1}{2}$)的值.
(2)数列{an} 满足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-2}{n}$)+f($\frac{n-1}{n}$)+f(1),求数列{$\frac{{{2a}_{n}a}^{n}}{2011}$}的前n项和Sn
(3)若Tn=$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$,证明:${T_n}<\frac{4}{{{{2011}^2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.P为平面ABCD外一点,E∈PB,F∈AC,且$\frac{PE}{EB}$=$\frac{CF}{FA}$,求证:EF∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,某公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(Ⅰ)设AD=x,DE=y,求y关于x的函数关系式;
(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里?请予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断下列命题属于全称命题还是特称命题,并用数学量词符号改写下列命题:
(1)任意的m>1方程x2-2x+m=0无实数根;
(2)存在一对实数 x,y,使2x+3y+3>0成立;
(3)存在一个三角形没有外接圆;
(4)实数的平方大于等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是教材选修1-2中《推理与证明》一章的知识结构图,请把A处填入适当的方法综合法.

查看答案和解析>>

同步练习册答案