精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)满足f(-x)=f(
3
2
+x),且当0<x≤
3
2
时,f(x)=log2(3x+1),则f(2015)等于(  )
A、-1B、-2C、1D、2
考点:对数的运算性质,函数奇偶性的性质
专题:函数的性质及应用
分析:由已知的等式结合函数为奇函数求得函数的周期,把f(2015)转化为含有f(1)的代数式得答案.
解答: 解:∵f(x)为奇函数,又f(-x)=f(
3
2
+x),得
f(
3
2
+x)=-f(x),
∴f(3+x)=-f(
3
2
+x)=f(x),
即函数f(x)的周期为3,
∴f(2015)=f(3×672-1)=f(-1).
又当0<x≤
3
2
时,f(x)=log2(3x+1),
∴f(2015)=f(-1)=-f(1)=-log2(3×1+1)=log24=-2.
故选:B.
点评:本题考查了函数奇偶性的性质,考查了函数周期的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

实数a,b,c满足2b=a+c,求ax+by+c=0被圆x2+y2=5截得的线段中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知PA⊥平面ABC,AB是⊙O的直径,C是圆上的任意一点,求证:PC⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正三棱锥的底面边长是6,高是
3
,那么这个正三棱锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若
C
1
n
C
2
n
C
3
n
成等差,求n的值;
(2)求证:
C
k
n
n
=
C
k-1
n-1
k
(其中n≥k≥2,k∈N)

(3)数列{xn}是首项为x1,公比为q的等比数列,其前n项和为Sn,化简下列式子:Tn=S1
C
1
n
+S2
C
2
n
+…+Sn
C
n
n

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx,g(x)=
2(x-1)
x+1

(Ⅰ)求函数y=f(x)-g(x)的单调区间;
(Ⅱ)当x>1时,证明:f(x)>g(x);
(Ⅲ)函数f(x)与f(x)的图象在交点处是否有公切线?若有,求出该公切线的方程;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12
6
海里;在A处看灯塔C在货轮的北偏西30°,距离为8
3
海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点为B(0,4),离心率e=
5
5
,直线l交椭圆于M,N两点.
(1)求椭圆的方程;
(2)若直线l的方程为y=x-4,求弦MN的长.

查看答案和解析>>

同步练习册答案