精英家教网 > 高中数学 > 题目详情
17.若关于x的不等式|x-m|+|x+2|>4的解集为R,则实数m的取值范围是(  )
A.(-2,6)B.(-∞,-6)∪(2,+∞)C.(-∞,-2)∪(6,+∞)D.(-6,2)

分析 由绝对值的意义可得|x-m|+|x+2|的最小值等于|2+m|,由题意可得|2+m|>4,由此解得实数m的取值范围.

解答 解:由|x-m|+|x+2|≥|x-m-x-2|=|m+2|,它的最小值等于|2+m|,
由题意可得|2+m|>4,解得m>2,或 m<-6,
故选:B.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,得到|2+m|>4是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=$\sqrt{10}$,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若$\overline{z}$+$\frac{m-i}{1+i}$为纯虚数(其中m∈R),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)设α,β为锐角,且$sinα=\frac{{\sqrt{5}}}{5},cosβ=\frac{{3\sqrt{10}}}{10}$,求α+β的值;
 (2)化简求值:$sin50°(1+\sqrt{3}tan10°)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且当λ∈R时,|$\overrightarrow{b}-λ\overrightarrow{a}$|的最小值为2$\sqrt{2}$,则向量$\overrightarrow{a}+\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为(  )
A.1 或2B.2C.1 或3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的两条对角线相交于点O,点E、F分别在边AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直线EF交于AC于点K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,则λ等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.禽流感是家禽养殖业的最大威胁.为检验某新药物预防禽流感的效果,取80只家禽进行试验,得到如下丢失数据的列联表:(c,d,M,N表示丢失的数据)
患病未患病总计
未服用药ab40
服用药5dM
总计25N80
(1)求出a,b,d,M,N的值,并判断:能否有99.5%的把握认为药物有效;
(2)若表中服用药后患病的5只家禽分别为3只鸡和2只鸭,现从这5只家禽中随机选取2只,求这2只家禽是同一类的概率.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以模型y=cekx(e为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z=lny,其变换后得到线性回归方程为z=0.4x+2,则c=e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+acost\\ y=asint\end{array}$(t为参数,a>0),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ.
(1)求曲线C1的普通方程,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=$\frac{π}{4}$,若曲线C1与C2的公共点都在C3上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=x-mlnx-\frac{m-1}{x}({m∈R})$,$g(x)=\frac{1}{2}{x^2}+{e^x}-x{e^x}$,
(1)当x∈[1,e],求f(x)的最小值,
(2)当m≤2时,若存在${x_1}∈[{e,{e^2}}]$,使得对任意x2∈[-2,0],f(x1)≤g(x2)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案