精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2ωx-sin2ωx(ω>0)的最小正周期为6,过两点A(t,f(t)),B(t+1,f(t+1))的直线的斜率记为g(t).
(Ⅰ)求ω的值;
(Ⅱ)写出函数g(t)的解析式,求g(t)在[-
3
2
3
2
]上的取值范围.
考点:二倍角的余弦,三角函数的周期性及其求法
专题:综合题,三角函数的求值
分析:(Ⅰ)化简函数f(x),利用最小正周期为6,求ω的值;
(Ⅱ)根据过两点A(t,f(t)),B(t+1,f(t+1))的直线的斜率,可得函数g(t)的解析式,再利用辅助角公式,化简函数,即可求g(t)在[-
3
2
3
2
]上的取值范围.
解答: 解:(Ⅰ)因为函数y=cos2ωx-sin2ωx=cos2ωx,最小正周期为6,
所以
=6,所以ω=
π
6

(Ⅱ)g(t)=f(t+1)-f(t)=cos(
π
3
t+
π
3
)-cos
π
3
t=-sin(
π
3
t+
π
6

∵t∈[-
3
2
3
2
],∴
π
3
t+
π
6
∈[-
π
3
3
],
∴sin(
π
3
t+
π
6
)∈[-
3
2
,1],
∴-sin(
π
3
t+
π
6
)∈[-1,
3
2
]
∴g(t)在[-
3
2
3
2
]上的取值范围为[-1,
3
2
].
点评:本题考查直线的斜率计算,考查三角函数的值域问题,考查学生的计算能力,正确确定函数解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b∈R,i是虚数单位,若a-i与2+bi互为共轭复数,则(a+bi)2=(  )
A、5-4iB、5+4i
C、3-4iD、3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an+1)}为等差数列,且a1=3,a2=7(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,求证:
a2+
1
a2
-
3
>a+
1
a
-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
月收入 [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 8 5 2 1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
非高收入族 高收入族 总计
赞成
不赞成
总计
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率.
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P (X2≥K) 0.01 0.05 0.1
K 6.635 3.841 2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

若a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4=x4,则a2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
是同一平面内所有向量的一组基底,若(λ
a
+
b
)∥(
a
-2
b
),则实数λ的值为(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

同步练习册答案