如图,正方体ABCD-A1B1C1D1中,E、F分别为棱AB、CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )
![]()
A.不存在 B.有1条
C.有2条 D.有无数条
科目:高中数学 来源: 题型:
在空间中,有如下命题:
①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;
②若平面α∥平面β,则平面α内任意一条直线m∥平面β;
③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;
④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.
其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2013·长春三校调研)如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点.
(1)求证:AM=CM;
(2)若N是PC的中点,求证:DN∥平面AMC.
[
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在立体图形D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足______时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
,∠PAB=60°.M是PD的中点.
![]()
(1)证明:PB∥平面MAC;
(2)证明:平面PAB⊥平面ABCD;
(3)求四棱锥P-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com