精英家教网 > 高中数学 > 题目详情
11.如图,等腰梯形AMNB内接于半圆O,直径AB=4,MN=2,MN的中点为C,则$\overrightarrow{AM}$•$\overrightarrow{BC}$的值为1.

分析 建立坐标系,求出向量的坐标,从而得出数量积.

解答 解:以O为原点,以AB为x轴建立坐标系,如图所示:
则A(-2,0),M(-1,$\sqrt{3}$),B(2,0),C(0,$\sqrt{3}$),
∴$\overrightarrow{AM}$=(1,$\sqrt{3}$),$\overrightarrow{BC}$=(-2,$\sqrt{3}$),
∴$\overrightarrow{AM}•\overrightarrow{BC}$=-2+3=1.
故答案为:1.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,公差d≠0,且a1,a4,a10成等比数列,则$\frac{{a}_{1}}{d}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.生产某种产品的年固定成本为250万元,每生产x千件,需要另投入成本为C(x),当年产量不足80千件时,C(x)=$\frac{1}{360}{x^3}$+20x(万元),当年产量不小于80千件时,C(x)=51x+$\frac{10000}{x}$-1450(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式(利润=销售额-成本);
(2)年产量为多少千件时,生产该商品获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n项和为(  )
A.$\frac{2n}{2n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+2}{n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),则cos($\frac{π}{3}$-θ)=$\frac{4\sqrt{3}-3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={1,a},B={1,3},若A∪B={1,2,3},则实数A的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在Rt△ABC中,$A=\frac{π}{2}$,AB=4,AC=3,则$\overrightarrow{CA}•\overrightarrow{CB}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-3|+ax-6(a是常数,a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥0的解集;
(Ⅱ)当x∈[-1,1]时,不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案