精英家教网 > 高中数学 > 题目详情
11.经过点A(-2,1),B(1,a)的直线l与斜率为$\frac{3}{4}$的直线垂直,则a的值为-3.

分析 由两点求斜率公式求得kAB,再由直线垂直与斜率间的关系得答案.

解答 解:由A(-2,1),B(1,a),得${k}_{AB}=\frac{a-1}{1-(-2)}=\frac{a-1}{3}$,
∵经过点A(-2,1),B(1,a)的直线l与斜率为$\frac{3}{4}$的直线垂直,
∴$\frac{a-1}{3}•\frac{3}{4}=-1$,解得:a=-3.
故答案为:-3.

点评 本题考查直线的斜率,考查了两直线垂直与斜率间的关系,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.等差数列{an}中,an+1>an(n∈N),a2,a4为方程x2-10x+21=0的两根,前n项和为Sn,等比数列{bn}的前n项和Tn=3n+c(c为常数).
(1)求c的值;
(2)证明:对任意n∈N*,Sn-Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有以下判断:
①$f(x)=\frac{|x|}{x}$与$f(x)=\left\{{\begin{array}{l}{1,({x≥0})}\\{-1,({x<0})}\end{array}}\right.$是同一个函数;
②y=2x-1与y=2t-1是同一个函数;
③y=f(x)与直线x=2的交点最多有一个;
④y=1不是函数.
其中正确的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若2a6=6+a7,则S9的值是54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=(7+3i)i2(i为虚数单位)在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(-2)的值为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0.若3是3a与3b的等比中项,则$\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.$3+2\sqrt{2}$B.$\frac{{3+2\sqrt{2}}}{3}$C.$\frac{{3+2\sqrt{2}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个结论中,正确的有(  )(填所有正确结论的序号).
①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;
②“$\left\{\begin{array}{l}{a>0}\\{△={b}^{2}-4ac}≤0\end{array}\right.$”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件
③“x≠1”是“x2≠1”的充分不必要条件;
④“x≠0”是“x+|x|>0”的必要不充分条件.
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,该程序运行后输出的结果为(  )
A.7B.11C.25D.36

查看答案和解析>>

同步练习册答案