精英家教网 > 高中数学 > 题目详情
17.如图在空间四边形OABC中,点M在OA上,且OM=2MA,N为BC中点,则$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$B.$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$C.$\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$D.$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$

分析 利用向量多边形与三角形法则即可得出.

解答 解:$\overrightarrow{MN}$=$\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}$=$\frac{1}{3}\overrightarrow{OA}$+$\overrightarrow{AB}$+$\frac{1}{2}\overrightarrow{BC}$=$\frac{1}{3}\overrightarrow{OA}$+$(\overrightarrow{OB}-\overrightarrow{OA})$+$\frac{1}{2}(\overrightarrow{OC}-\overrightarrow{OB})$=$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$.
故选:B.

点评 本题考查了向量多边形与三角形法则,考查了推理能力由于计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若直线x+y+m=0上存在点P可作圆O:x2+y2=1的两条切线PA、PB,切点为A、B,且∠APB=60°,则实数m的取值范围为$[-2\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)={a^{-{x^2}+3x+2}}(0<a<1)$的单调递增区间是($\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量ξ~B(5,$\frac{1}{3}$),则P(ξ=3)=(  )
A.$\frac{5}{27}$B.$\frac{7}{81}$C.$\frac{40}{243}$D.$\frac{19}{144}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线mx+4y-2=0与2x-5y+1=0互相垂直,则m的值为(  )
A.10B.20C.0D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法不正确的是(  )
A.“若xy=0,则x=0或y=0”的否命题是真命题
B.命题“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.?x∈R,使得ex<x-1
D.“a<0”是“x2+ay2=1表示双曲线”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在区间[1,6]和[2,4]上分别各取一个数,记为m和n,则方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若采用系统抽样法,则抽样间隔和随机剔除的个体分别为3,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,点E为正方体ABCD-A1B1C1D1的棱BB1的中点,用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案