分析 x∈(0,$\frac{1}{4}$),可得1-4x,4x∈(0,1).变形f(x)=$\frac{4}{x}$+$\frac{1}{1-4x}$=[4x+(1-4x)]$(\frac{4}{x}+\frac{1}{1-4x})$,展开利用基本不等式的性质即可得出.
解答 解:∵x∈(0,$\frac{1}{4}$),∴1-4x,4x∈(0,1).
∴f(x)=$\frac{4}{x}$+$\frac{1}{1-4x}$=[4x+(1-4x)]$(\frac{4}{x}+\frac{1}{1-4x})$=17+$\frac{4x}{1-4x}$+$\frac{4(1-4x)}{x}$≥17+8$\sqrt{\frac{x}{1-4x}•\frac{1-4x}{x}}$=25,当且仅当x=$\frac{1}{5}$时取等号.
∴f(x)的最小值为25.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$$\overrightarrow{BE}$ | B. | $\frac{1}{2}$$\overrightarrow{AD}$ | C. | $\overrightarrow{ED}$ | D. | $\overrightarrow{FE}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com