精英家教网 > 高中数学 > 题目详情
15.函数f(x)=xsinx的导函数f′(x)在区间[-π,π]上的图象大致为(  )
A.B.C.D.

分析 求出函数f(x)的导数f′(x),结合函数的奇偶性,定义域,单调性的性质进行判断.

解答 解:函数的导数f′(x)=sinx+xcosx,
则f′(-x)=-sinx-xcosx=-(sinx+xcosx)=-f′(x),
则f′(x)为奇函数,图象关于原点对称,排除A,B,D,
故选:C

点评 本题主要考查函数导数的性质,以及函数图象的判断,求函数的导数,利用函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为$\sqrt{2}$,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.6$\sqrt{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,PO⊥平面ABCD,O点在AC上,PO=2,M为PD中点.
(1)证明:AD⊥平面PAC;
(2)求三棱锥M-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+ax2十bx+c,下列结论中正确的是③④.(填上所有正确结论的序号)
①若f′(x0)=0,则f(x0)=0;
②函数y=f(x)的图象是轴对称图形;
③f(x)可能是单调函数;
④?x0∈R,使得f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),右顶点为M($\sqrt{2}$,0).
(1)求此椭圆的标准方程;
(2)设点P(2,0),点A是已知椭圆上的任意一点,点C是点A关于x轴的对称点,直线PA交椭圆于另一个不同的点B(不考虑直线PA的斜率为0的情形).问:直线BC是否一定经过右焦点F?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)的椭圆C的中心在坐标原点,对称轴为坐标轴,若这个椭圆的一个焦点为F(-1,0).
(1)求椭圆C的方程;
(2)过点F(-1,0)、倾斜角为$\frac{π}{4}$的直线l交椭圆C于两点,求这两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的左焦点,P为椭圆上一点,M是PF的中点,且|PF|=4,则坐标原点O到点M的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知方程$\left\{\begin{array}{l}{x=1+tsinα}\\{y=1+tcosα}\end{array}\right.$.
(1)当常数α∈(0,π),t为参数时,求该直线的倾斜角;
(2)当t=2,α为参数时,过点P(0,1)作直线l与己知方程的曲线相交于两个不同的点A,B,求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线3x-y=0绕原点逆时针旋转90°,再向右平移1个单位,所得到直线的方程为(  )
A.x+3y-3=0B.x+3y-1=0C.3x-y-3=0D.x-3y+3=0

查看答案和解析>>

同步练习册答案