精英家教网 > 高中数学 > 题目详情
20.已知过点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)的椭圆C的中心在坐标原点,对称轴为坐标轴,若这个椭圆的一个焦点为F(-1,0).
(1)求椭圆C的方程;
(2)过点F(-1,0)、倾斜角为$\frac{π}{4}$的直线l交椭圆C于两点,求这两点间的距离.

分析 (1)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=1,代入点M,解方程可得a,b,进而得到椭圆方程;
(2)运用点斜式方程可得直线l的方程,代入椭圆方程,求得交点,由两点的距离公式,计算即可得到所求值.

解答 解:(1)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=1,a2-b2=1,
又$\frac{1}{2{a}^{2}}$+$\frac{3}{4{b}^{2}}$=1,
解方程可得a=$\sqrt{2}$,b=c=1,
则椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)由题意可得直线l的方程为y=x+1,
代入椭圆方程,可得3x2+4x=0,
解得x=0或-$\frac{4}{3}$,
即有交点为(0,1),(-$\frac{4}{3}$,-$\frac{1}{3}$),
则交点间的距离为$\sqrt{(0+\frac{4}{3})^{2}+(1+\frac{1}{3})^{2}}$=$\frac{4}{3}$$\sqrt{2}$.

点评 本题考查椭圆的方程的求法,考查点在椭圆上满足椭圆方程,同时考查直线和椭圆相交,运用两点的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A1、A2、B1、B2、F1、F2分别是其左右顶点,上下顶点和左右焦点,四边形A1B1A2B2的面积是四边形B1F2B2F1面积的2倍.
(1)求椭圆C的离心率;
(2)三角形B1B2A2的外接圆记为⊙M,若直线B1F2被⊙M截得的弦长为$\frac{13}{4}$,求⊙M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-x}{1+{x}^{2}}$ex,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,俯视图为等边三角形,若其侧面积为12$\sqrt{3}$,则a是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=xsinx的导函数f′(x)在区间[-π,π]上的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.1B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{3\sqrt{3}}{2}$+12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,A、B分别是椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(2>b>0)的左右顶点,F为其右焦点,|AF|×|FB|=3.
(1)求b;
(2)已知直线l过点A且垂直于x轴,点Q是直线l异于A的动点,直线BQ交椭圆C于点P,证明:AP⊥FQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若2x-y+1≥0,2x+y≥0,且x≤1,则z=x+3y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0),过点A(12,0)作直线MN垂直x轴交抛物线于M、N两点,ME⊥ON于E,AE∥OM,O为坐标原点.
(Ⅰ)求p的值;
(Ⅱ)是否存在直线l与抛物线C交于G、H两点,且F(2,-2)是GH的中点.若存在求出直线l方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案