精英家教网 > 高中数学 > 题目详情
10.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A1、A2、B1、B2、F1、F2分别是其左右顶点,上下顶点和左右焦点,四边形A1B1A2B2的面积是四边形B1F2B2F1面积的2倍.
(1)求椭圆C的离心率;
(2)三角形B1B2A2的外接圆记为⊙M,若直线B1F2被⊙M截得的弦长为$\frac{13}{4}$,求⊙M的方程.

分析 (1)利用四边形A1B1A2B2的面积是四边形B1F2B2F1面积的2倍,建立方程,即可求椭圆C的离心率;
(2)设M(m,0),则(a-m)2=m2+b2,m=$\frac{1}{8}$a=$\frac{1}{4}$c,r=$\frac{7}{8}$a=$\frac{7}{4}$c,直线B1F2的方程为$\frac{x}{c}+\frac{y}{-b}$=1,即bx-cy-bc=0,$\sqrt{3}$x-y-$\sqrt{3}$c=0,利用勾股定理,求出c.即可求⊙M的方程.

解答 解:(1)∵四边形A1B1A2B2的面积是四边形B1F2B2F1面积的2倍,
∴$\frac{1}{2}$×2a×b×2=2×$\frac{1}{2}$×2c×b,
∴e=$\frac{c}{a}$=$\frac{1}{2}$;
(2)设M(m,0),则(a-m)2=m2+b2
∴m=$\frac{1}{8}$a=$\frac{1}{4}$c,r=$\frac{7}{8}$a=$\frac{7}{4}$c,
直线B1F2的方程为$\frac{x}{c}+\frac{y}{-b}$=1,即bx-cy-bc=0,
∵b=$\sqrt{3}$c,
∴$\sqrt{3}$x-y-$\sqrt{3}$c=0
∴圆心到直线的距离d=$\frac{|\frac{\sqrt{3}}{4}c-\sqrt{3}c|}{\sqrt{3+1}}$=$\frac{3\sqrt{3}}{8}$c,
∵直线B1F2被⊙M截得的弦长为$\frac{13}{4}$,
∴($\frac{3\sqrt{3}}{8}$c)2+($\frac{13}{8}$)2=($\frac{7}{4}$c)2
∴c=$\frac{1}{2}$,
∴m=$\frac{1}{8}$,r=$\frac{7}{8}$,
∴⊙M的方程(x-$\frac{1}{8}$)2+y2=$\frac{49}{64}$.

点评 本题考查椭圆的性质,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.过曲线y=$\sqrt{x}$上的点(4,2)的切线方程是(  )
A.x+4y+4=0B.x-4y-4=0C.x-4y+4=0D.x+4y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某多面体的三视图如图所示,则该多面体各面的面积中最大的是(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.4$\sqrt{3}$πB.12πC.24πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为$\sqrt{2}$,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.6$\sqrt{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2分别是椭圆的左右焦点,点B(0,-b)是椭圆C的下顶点,BF1的延长线交椭圆C于点A,点D和点A关于x轴对称.
(1)若BF1=2,点D(-$\frac{8\sqrt{3}}{7}$,-$\frac{1}{7}$),求椭圆的标准方程;
(2)若$\overrightarrow{D{F}_{2}}$•$\overrightarrow{BA}$=0,求椭圆C的离心率e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若椭圆$\frac{x^2}{4}+\frac{y^2}{m}=1$的离心率$e=\frac{{\sqrt{3}}}{2}$,则实数m的值是(  )
A.1B.1或16C.$\frac{4}{3}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.直线l过点(1,1),且与椭圆C交于A,B两点,线段AB的中点为M.
(I)求椭圆C的方程;
(Ⅱ)点O为坐标原点,延长线段OM与椭圆C交于点P,四边形OAPB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)的椭圆C的中心在坐标原点,对称轴为坐标轴,若这个椭圆的一个焦点为F(-1,0).
(1)求椭圆C的方程;
(2)过点F(-1,0)、倾斜角为$\frac{π}{4}$的直线l交椭圆C于两点,求这两点间的距离.

查看答案和解析>>

同步练习册答案