精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$.
(Ⅰ)求f(x)的最小正周期和单调增区间;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,求函数f(x)的最小值和最大值.

分析 (Ⅰ)由三角函数公式化简可得f(x)=sin(2x-$\frac{π}{6}$)-1,由周期公式可得周期,解2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得单调增区间;
(Ⅱ)由x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]可得2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],可得sin(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],可得答案.

解答 解:(Ⅰ)化简可得$f(x)=\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1+cos2x)-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1
=sin(2x-$\frac{π}{6}$)-1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$
∴函数的单调增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$]k∈Z;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴sin(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴函数f(x)的最小值和最大值分别为-$\frac{\sqrt{3}}{2}$-1和0.

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.使($\frac{1+i}{1-i}$)n取得正实数的n(n∈N*)最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠C=90°,BC=2,M为BC的中点,sin∠BAM=$\frac{1}{3}$,则AC的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的前n项和为Sn,若对任意n∈N*,都有${S_n}={(-1)^n}{a_n}+\frac{1}{2^n}+n-3$,则数列{a2n-1}的前n项和为$\frac{1}{{2}^{n-2}}$-$\frac{1}{{4}^{n}}$-3+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1,则双曲线C的离心率e的取值范围是(  )
A.(3,+∞)B.(1,2+$\sqrt{5}$)C.(3,2+$\sqrt{5}$)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有(  )种.
A.14B.18C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z=$\frac{|8+6i|}{6-8i}$(i是虚数单位),则z的虚部为(  )
A.4B.$\frac{4}{5}$C.-4D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知①x=x-1,②x=x-2,③x=x-3,④x=x-4在如图所示的程序框图中,如果输入x=10,而输出y=4,则在空白处可填入(  )
A.①②③B.②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)讨论函数f(x)在(0,+∞)的单调性
(2)过原点分别作曲线y=f(x)与y=g(x)的切线l1、l2,已知两条切线的斜率互为倒数,证明$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$或a=0.

查看答案和解析>>

同步练习册答案