精英家教网 > 高中数学 > 题目详情
4.设sinα,cosα是方程5x2+7x+m-1=0的两个实根.
(I)求实数m的值;
(Ⅱ)求(1-sin2α)cosα+sin2αtanαcosα的值.

分析 (Ⅰ)由韦达定理得sinα+cosα=-$\frac{7}{5}$,sinαcosα=$\frac{m-1}{5}$,由此利用同角三角函数关系式能求出实数m的值.
(Ⅱ)由同角三角函数关系式得(1-sin2α)cosα+sin2αtanαcosα=cos3α+sin3α,由此能求出结果.

解答 解:(Ⅰ)∵sinα,cosα是方程5x2+7x+m-1=0的两个实根,
∴sinα+cosα=-$\frac{7}{5}$,sinαcosα=$\frac{m-1}{5}$,
∴1+2sinαcosα=1+$\frac{2m-2}{5}$=$\frac{49}{25}$,
解得m=$\frac{17}{5}$.
(Ⅱ)(1-sin2α)cosα+sin2αtanαcosα
=cos3α+sin3α
=(cosα+sinα)(cos2α-cosαsinα+sin2α)
=-$\frac{7}{5}$(1-$\frac{\frac{17}{5}-1}{5}$)
=$\frac{91}{125}$.

点评 本题考查实数值的求法,考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.与$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有共同的渐近线,且过点(0,-8)的双曲线方程为$\frac{{y}^{2}}{64}-\frac{{x}^{2}}{36}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠BAD=90°,BC∥AD,PA=AB=BC=1,AD=2.
(1)若E为PD的中点,求AE与PC所成的角;
(2)PC与平面PAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知Sn是首项为a的等比数列{an}的前n项的和,S3,S9,S6成等差数列.
(1)求:a2,a8,a5成等差数列;
(2)若Tn=a1+2a4+3a7+…+na3n-2,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知角θ的终边经过点P(m+4,3m-3).
(I)若cosθ≥0,且sinθ<0,求实数m的取值范围;
(Ⅱ)若$\frac{sinθ-3cosθ}{cosθ+sinθ}$=-$\frac{5}{3}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且∠A=$\frac{3}{4}$π,sinC=$\frac{\sqrt{5}}{5}$,则a-c=5-$\sqrt{10}$,则b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{log}_{2}x,x≥1}\\{x^2+m^2,x<1}\end{array}\right.$,若f(f(-1))=2,在实数m的值为(  )
A.1B.1或-1C.$\sqrt{3}$D.$\sqrt{3}$或-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知z=$\frac{a-i}{1-i}$,a>0,复数ω=z(z+i)的虚部减去它的实部所得的差为$\frac{3}{2}$,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在如图所示的空间几何体中,AC⊥BC,四边形DCBE为矩形,点F,M分别为AB,CD的中点.
(Ⅰ)求证:FM∥平面ADE;
(Ⅱ)求证:平面ACD⊥平面ADE.

查看答案和解析>>

同步练习册答案