精英家教网 > 高中数学 > 题目详情

已知的三个内角,向量
,且.
(1)求角
(2)若,求.

(1)(2)

解析试题分析:(1)   2分
   4分
   5分
,即   6分
(2)
解得    11分
   14分
考点:向量的数量积及三角函数化简
点评:若向量,用到的主要三角函数公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,分别为三个内角的对边,锐角满足. (Ⅰ)求的值;
(Ⅱ) 若,当取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)写出函数的最小正周期及单调增区间;
(2)若时,求函数的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,在同一个周期内,当取最大值1,当时,取最小值-1
(1)求函数的解析式;   
(2)若函数满足方程;求在内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1)求角的大小;
(2)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选项,并以此为依据求出的面积(只需写出一个选定方案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)化简;     (Ⅱ)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数内的单调递增区间;
(2)求函数内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知tan(α+)=-3,α∈(0,).
(1)求tanα的值;
(2)求sin(2α-)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最小正周期及对称中心;
(2)求函数的单调递减区间.

查看答案和解析>>

同步练习册答案