精英家教网 > 高中数学 > 题目详情

已知tan(α+)=-3,α∈(0,).
(1)求tanα的值;
(2)求sin(2α-)的值.

(1)2     (2)      

解析试题分析:(1)由tan(α+)=-3可得
解得tanα=2.
(2)由tanα=2,α∈(0,),可得sinα=,cosα=
因此sin2α=2sinαcosα=,cos2α=1-2sin2α=-
sin(2α-)=sin2αcos-cos2αsin
考点:两角和差的三角公式
点评:主要是考查了二倍角公式以及两角和差的公式的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)在中,角所对的边分别是,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个内角,向量
,且.
(1)求角
(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1) 已知都为锐角,,求的值
(2)已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)将函数化简成的形式;
(2)求的单调递减区间;
(3)求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数在某一个周期内的图象的最高点和最低点的坐标分别为.
的值;
(2)已知,且, 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不查表求值: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量互相垂直,其中.
(Ⅰ)求的值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的最大值为,最小正周期为
(1)求
(2)若有10个互不相等的正数满足,求的值。

查看答案和解析>>

同步练习册答案