精英家教网 > 高中数学 > 题目详情
4.若复数z1=1+i,z2=2-i(i为虚数单位),则z1z2的模为$\sqrt{10}$.

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:z1z2=(1+i)(2-i)=3+i,
∴|z1z2|=$\sqrt{{3}^{2}+{1}^{1}}$=$\sqrt{10}$.
故答案为:$\sqrt{10}$.

点评 本题查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设集合M={x|x2-3x-4<0},N={x|-5≤x≤0},则M∩N=(  )
A.(-1,0]B.[0,4)C.(0,4]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当输入的x 值为-5时,如图的程序运行的结果等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F1(-2,0),离心率e=$\frac{1}{2}$.
(1)求椭圆E的方程;
(2)求以点P(2,1)为中点的弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-1<0},B={x|x>0},则集合(∁RA)∪B=(  )
A.(0,1]B.[1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=cos2x的图象向左平移φ(φ>0)个单位后,若所得的图象经过点$({\frac{π}{3},0})$,则φ的最小值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在平面直角坐标系xOy中,椭圆$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,A是椭圆的左顶点,M,N是椭圆上的两个动点,直线AM交y轴于点P.
(1)若$\overrightarrow{AP}=\frac{7}{8}\overrightarrow{AM}$,求直线AM的斜率;
(2)若a-b=1,圆C1:x2+(y-1)2=r2(0<r<1),直线AM和直线AN都与圆C1相切,当r变化时,试问直线MN是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年11月20日-22日在江西省南昌市举行了首届南昌国际马拉松赛事,赛后某机构用“10分制”调查了很多人(包括普通市民,运动员,政府官员,组织者,志愿者等)对此项赛事的满意度.现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;
(2)若满意度不低于9.5分,则称该被调查者的满意度为“极满意”.求从这16人中随机选取3人,至多有1人是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体(人数很多)任选3人,记ξ表示抽到“极满意”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-8≤0\\ x≤3\end{array}\right.$,若使得ax-y取得最小值的可行解有无数个,则实数a的值为1或$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案