精英家教网 > 高中数学 > 题目详情
17.在函数①y=cos|2x|,②y=|cosx|,③$y=cos(2x+\frac{π}{6})$,④$y=tan(2x-\frac{π}{4})$中,最小正周期为π的所有函数为①②③.(请填序号)

分析 由条件利用三角函数的周期性,得出结论.

解答 解:函数①y=cos|2x|=cos2x的最小正周期为$\frac{2π}{2}$=π,
②y=|cosx|的最小正周期为$\frac{1}{2}$•2π=π,
③$y=cos(2x+\frac{π}{6})$的最小正周期为$\frac{2π}{2}$=π,
④$y=tan(2x-\frac{π}{4})$的最小正周期为$\frac{π}{2}$,
故答案为:①②③.

点评 本题主要考查三角函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.点P是抛物线y2=4x上一点,记P到抛物线准线的距离为d1,到直线x-2y+10=0的距离为d2,则d1+d2的最小值为(  )
A.$\frac{12\sqrt{5}}{5}$+1B.$\frac{11\sqrt{5}}{5}$C.5D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a2+b2+c2=1,则ab+bc+ac的最大值为1,最小值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$为单位向量,|$\overrightarrow{b}$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为45°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(3)若若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集R,集合M={x|x>1},N={x||x|≤2},则(∁RM)∩N等于(  )
A.(-2,1]B.[-2,1)C.[-2,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知随机变量ξ服从正态分布N(4,6),若p(ξ>c+2)=p(ξ<c-2),则c的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=cos(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{12}$单位后,得到的图象的函数解析式为(  )
A.y=cos(2x+$\frac{5π}{12}$)B.y=-sin2xC.y=cos(2x+$\frac{π}{4}$)D.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\frac{sinx}{x}$,f′(x)为函数f(x)的导函数,则f′(π)=-$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的公比q>1,a1=1,且a1,a3,a2+14成等差数列,数列{bn}满足:a1b1+a2b2+…+anbn=(n-1)•3n+1,n∈N.
(I)求数列{an}和{bn}的通项公式;
(Ⅱ)若man≥bn-8恒成立,求实数m的最小值.

查看答案和解析>>

同步练习册答案