精英家教网 > 高中数学 > 题目详情
15.等比数列的前n项和也构成一个等比数列,即Sn,S2n-Sn,S3n-S2n,…为等比数列,公比为qn

分析 由等比数列的求和公式和分类讨论可得结论.

解答 解:当公比q=1时,显然可得Sn,S2n-Sn,S3n-S2n,…构成等比数列;
当q≠1时,Sn=(1-qn
S2n-Sn=$\frac{{a}_{1}}{1-q}$(1-q2n-1+qn)=$\frac{{a}_{1}}{1-q}$(1-qn)qn
同理可得S3n-S2n=$\frac{{a}_{1}}{1-q}$(1-q3n-1+q2n)=$\frac{{a}_{1}}{1-q}$(1-qn)q2n
∴Sn,S2n-Sn,S3n-S2n,…,构成公比为qn的等比数列
故答案为:qn

点评 本题考查等比数列的性质,涉及等比数列的求和公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知tanα=-$\frac{3}{4}$,α∈(0,π),则cosα=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.±$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列9,-2,-10,3的前3项和S3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{PQ}$=(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|1≤ax≤2},B={x||x|≤1},是否存在实数a,使得A⊆B?求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(n)=$\frac{2n}{n+2}$,若数列{an}满足a1=$\frac{1}{2}$,an=f(an-1)(n≥2),求证{$\frac{1}{{a}_{n}}$}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}的各项均为正数,且满足a3=a1+2a2,则$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$等于(  )
A.2+3$\sqrt{2}$B.2+2$\sqrt{2}$C.3-2$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过两点A(2,3),B(-1,x)的直线l1与经过点P(2,0)且斜率为1的直线l2平行,则x的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x|x-1|
(1)画出该函数的图象;
(2)求函数f(x)的单调区间;
(3)设0<a<1,求f(x)在[0,a]上的最大值.

查看答案和解析>>

同步练习册答案