精英家教网 > 高中数学 > 题目详情
19.已知sin22α+sin2αcosα-cos2α=1,求锐角α.

分析 由题意结合三角函数公式和三角函数值的符号,解方程可得sinα=$\frac{1}{2}$,可得锐角α=$\frac{π}{6}$.

解答 解:∵锐角α满足sin22α+sin2αcosα-cos2α=1,
∴sin22α+sin2αcosα-(2cos2α-1)=1,
∴sin22α+sin2αcosα-2cos2α=0,
∴(sin2α-cosα)(sin2α+2cosα)=0,
由α为锐角可得sin2α+2cosα>0,
故可得sin2α-cosα=0,即2sinαcosα=cosα,
再由α为锐角可得cosα>0,约掉cosα可得sinα=$\frac{1}{2}$,
∴锐角α=$\frac{π}{6}$.

点评 本题考查三角函数恒等变换,涉及二倍角公式和三角函数值的符号,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},π)$,$tan(π-β)=\frac{1}{2}$,则tan(α-β)的值为(  )
A.$-\frac{2}{11}$B.$\frac{2}{11}$C.$\frac{11}{2}$D.$-\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中点,AB⊥平面B1C1CB,∠BCC1=60°.
(1)求证:AC⊥平面BDC1
(2)线段CC1上是否存在动点E使得二面角B1-BE一A1的大小为45°?若存在,确定E的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数f(x)满足f(x)+f(x+4)=16,当x∈(0,4]时,f(x)=x2-2x,则函数f(x)在[-4,2016]上的零点个数是(  )
A.504B.505C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=|2x+1|-|x-1|.
(Ⅰ)求不等式f(x)<2的解集;
(Ⅱ)若关于x的不等式f(x)≤a-$\frac{{a}^{2}}{2}$有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x=1,x=2,y=0及曲线y=x3围成的平面图形的面积为(  )
A.$\sum_{i=1}^{n}$$\frac{1}{n}$(1+$\frac{i}{n}$)3B.${∫}_{1}^{2}$x3dxC.${∫}_{2}^{1}$x3dxD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数y=3sin($\frac{π}{6}$-2x)-cos($\frac{π}{3}$+2x)(x∈R).
(1)求函数的周期;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈R.
(I)求函效f(x)的最小正周期和单调递增区间;
(2)当x∈[-$\frac{π}{8}$,$\frac{π}{2}$]时,方程f(x)=k恰有两个不同的实数根.求实数k的取值范围;
(3)将函数f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的图象向右平移m(m>0)个单位后所得函数g(x)的图象关于原点中心对称,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有四个数,前三个数成等差数列,首末两数之和为16,中间两数之和为12,第二个数与第四个数之积等于第三个数的平方,求这四个数.

查看答案和解析>>

同步练习册答案