精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为[1,3],则函数f(x+1)的定义域为
 
考点:函数的定义域及其求法
专题:计算题
分析:题目给出了f(x)的定义域,由x+1在f(x)的定义域范围内求解x的取值集合得函数f(x+1)的定义域.
解答: 解:∵f(x)的定义域为[1,3],
由1≤x+1≤3,得
0≤x≤2.
∴函数f(x+1)的定义域为[0,2].
故答案为:[0,2].
点评:本题考查了与抽象函数有关的简单的复合函数定义域的求法,关键是对该类问题求解方法的掌握,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:若不等式x2+ax+1≥0对于一切x∈R成立;q:曲线y=x2+(2a-3)x+1与x轴正半轴交于不同的两点,如果p且q为假命题,p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x(a∈R).
(1)求函数g(x)的解析式;
(2)求函数g(x)在[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},且A∪B={2,3,5},A∩B={3},求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x|,-2≤x≤2
-x+4,x>2
,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f﹙x﹚=
2x
1+|x|
﹙x∈R﹚,区间M=[a,b](a<b),集合N={y|y=f﹙x﹚,x∈M},则使M=N成立的实数对(a,b)有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“⊕”,“?”是两个运算符号,且满足如下运算法则:对任意a,b∈R,有a⊕b=ab,a?b=
a-b
(a+b)2+1
,设全集U={c|c=(a⊕b)+(a?b),-2<a≤b<1且a,b∈Z},A={d|d=2(a⊕b)+a?b,-1<a<b<2且a,b∈Z},则∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是单位向量,
a
b
=0.若向量
c
满足|
c
-2
a
-
b
|=1,则|
c
|2的取值范围是
 

查看答案和解析>>

同步练习册答案