若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
对于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,进而确定f(x)的解析式.对于(2),可利用函数思想求得.
[解析] (1)由f(0)=1得,c=1.
∴f(x)=ax2+bx+1.
又f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,
∴![]()
因此,f(x)=x2-x+1.
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.
∵g(x)=x2-3x+1-m在[-1,1]上单调递减,
∴g(x)min=g(1)=-m-1,
由-m-1>0得,m<-1.
因此满足条件的实数m的取值范围是(-∞,-1).
科目:高中数学 来源: 题型:
用min{a,b}表示a、b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-
对称,则t的值为( )
A.-2 B.2
C.-1 D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)的图象与函数h(x)=x+
+2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)+
,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则( )
A.a<b<c B.a<c<b
C.b<a<c D.c<a<b
查看答案和解析>>
科目:高中数学 来源: 题型:
的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得
,则n的取值范围为( )
A.{2,3} B.{2,3,4}
C.{3,4} D.{3,4,5}
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+
=1(a>b>0),点
在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com