15£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx+y-8=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=\sqrt{3}sin¦Á\end{array}\right.£¨¦ÁΪ²ÎÊý£©$£®
£¨1£©ÒÑÖª¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣬÈôµãPµÄ¼«×ø±êΪ$£¨4\sqrt{2}£¬\frac{¦Ð}{4}£©$£¬ÇëÅжϵãPÓëÇúÏßCµÄλÖùØÏµ£»
£¨2£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵÓë×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬°ÑµãPµÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±ê£¬°ÑÍÖÔ²µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¼´¿ÉÅжϳöλÖùØÏµ£®
£¨2£©·¨1£ºÒòΪµãQÔÚÇúÏßCÉÏ£¬¹Ê¿ÉÉèµãQµÄ×ø±êΪ$£¨cos¦Á£¬\sqrt{3}sin¦Á£©$£¬´Ó¶øµãQµ½Ö±ÏßlµÄ¾àÀëΪ $d=\frac{{|cos¦Á+\sqrt{3}sin¦Á-8|}}{{\sqrt{1+1}}}$£¬»¯¼òÔÙÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
·¨2£ºÖ±ÏßlµÄƽÐÐÏßn·½³Ì¿ÉÉèΪ£ºx+y+t=0£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª 4x2+2tx+t2-3=0£¬ÀûÓá÷=0£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèµãPµÄÖ±½Ç×ø±êÏµ×ø±êΪ£¨x0£¬y0£©£¬Ôò$\left\{\begin{array}{l}{x_0}=4\sqrt{2}cos\frac{¦Ð}{4}=4\\{y_0}=4\sqrt{2}sin\frac{¦Ð}{4}=4\end{array}\right.$£¬µÃ£ºP£¨4£¬4£©£®                                         ¡­
$\left\{\begin{array}{l}x=cos¦Á\\ y=\sqrt{3}sin¦Á\end{array}\right.£¨¦ÁΪ²ÎÊý£©⇒\frac{x^2}{1}+\frac{y^2}{3}={cos^2}¦Á+si{n^2}¦Á=1$£¬
¡ß$\frac{4^2}{1}+\frac{4^2}{3}£¾1$£¬
¡àµãPÔÚÇúÏßC ${x^2}+\frac{y^2}{3}=1$Í⣮
£¨2£©·¨1£ºÒòΪµãQÔÚÇúÏßCÉÏ£¬¹Ê¿ÉÉèµãQµÄ×ø±êΪ$£¨cos¦Á£¬\sqrt{3}sin¦Á£©$£¬
´Ó¶øµãQµ½Ö±ÏßlµÄ¾àÀëΪ  $d=\frac{{|cos¦Á+\sqrt{3}sin¦Á-8|}}{{\sqrt{1+1}}}$=$\frac{{8-2cos£¨¦Á-\frac{¦Ð}{3}£©}}{{\sqrt{2}}}=4\sqrt{2}-\sqrt{2}cos£¨¦Á-\frac{¦Ð}{3}£©$£¬
µ±$cos£¨¦Á-\frac{¦Ð}{3}£©=1$ʱ£¬Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×îСֵΪ$3\sqrt{2}$£¬
µ±$cos£¨¦Á-\frac{¦Ð}{3}£©=-1$ʱ£¬Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×î´óֵΪ$5\sqrt{2}$£¬
·¨2£ºÖ±ÏßlµÄƽÐÐÏßn·½³Ì¿ÉÉèΪ£ºx+y+t=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{x^2}+\frac{y^2}{3}=1\\ x+y+t=0\end{array}\right.$µÃ 3x2+£¨x+t£©2=3£¬¼´ 4x2+2tx+t2-3=0£¬
¡÷=4t2-16£¨t2-3£©=-12t2+48=0⇒t=¡À2£¬
ÇúÏßCµÄÁ½ÇÐÏß·½³ÌΪ x+y+2=0Óëx+y-2=0£¬
Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×î´óֵΪ $d=\frac{|2-£¨-8£©|}{{\sqrt{1+1}}}=5\sqrt{2}$£¬
Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×îСֵΪ $d=\frac{|-2-£¨-8£©|}{{\sqrt{1+1}}}=3\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªM={x|x=a2+2a+2£¬a¡ÊN}£¬N={y|y=b2-4b+5£¬b¡ÊN}£¬ÔòM£¬NÖ®¼äµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®M⊆NB£®N⊆M
C£®M=ND£®MÓëNÖ®¼äûÓаüº¬¹ØÏµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDΪÕý·½ÐΣ¬PA¡ÍÆ½ÃæABCD£¬PA¡ÎBE£¬AB=PA=6£¬BE=3£®
£¨¢ñ£©ÇóÖ¤£ºCE¡ÎÆ½ÃæPAD
£¨¢ò£©ÇóPDÓëÆ½ÃæPCEËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÈôÃݺ¯Êýf£¨x£©=xkÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬Ôòk¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®$\frac{1}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚº¯Êý¢Ùy=x-1£»¢Úy=2x£»¢Ûy=log2x£»¢Üy=tanxÖУ¬Í¼Ïó¾­¹ýµã£¨1£¬1£©µÄº¯ÊýµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢ÙB£®¢ÚC£®¢ÛD£®¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+1=an+1£¬SnΪ{an}µÄǰnÏîºÍ£¬ÈôSn=21£¬Ôòn=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÈýÀâ×¶P-ABCµÄËùÓж¥µã¶¼ÔÚÇòOµÄÇòÃæÉÏ£¬¡÷ABCÊDZ߳¤Îª1µÄÕýÈý½ÇÐΣ¬PCΪÇòOµÄÖ±¾¶£¬¸ÃÈýÀâ×¶µÄÌå»ýΪ$\frac{\sqrt{2}}{6}$£¬ÔòÇòOµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®4¦ÐB£®8¦ÐC£®12¦ÐD£®16¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁк¯ÊýÖУ¬Ã»ÓÐÁãµãµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=0B£®f£¨x£©=2C£®f£¨x£©=x2-1D£®f£¨x£©=x-$\frac{1}{x}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªf£¨x£©=ax2-£¨a+1£©x+b£®
£¨1£©Èôf£¨x£©¡Ý0µÄ½â¼¯Îª{x|-$\frac{1}{5}$¡Üx¡Ü1}ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©µ±a£¾0£¬b=1ʱ£¬Çó¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼0µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸