·ÖÎö £¨1£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬°ÑµãPµÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±ê£¬°ÑÍÖÔ²µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¼´¿ÉÅжϳöλÖùØÏµ£®
£¨2£©·¨1£ºÒòΪµãQÔÚÇúÏßCÉÏ£¬¹Ê¿ÉÉèµãQµÄ×ø±êΪ$£¨cos¦Á£¬\sqrt{3}sin¦Á£©$£¬´Ó¶øµãQµ½Ö±ÏßlµÄ¾àÀëΪ $d=\frac{{|cos¦Á+\sqrt{3}sin¦Á-8|}}{{\sqrt{1+1}}}$£¬»¯¼òÔÙÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
·¨2£ºÖ±ÏßlµÄƽÐÐÏßn·½³Ì¿ÉÉèΪ£ºx+y+t=0£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª 4x2+2tx+t2-3=0£¬ÀûÓá÷=0£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèµãPµÄÖ±½Ç×ø±êÏµ×ø±êΪ£¨x0£¬y0£©£¬Ôò$\left\{\begin{array}{l}{x_0}=4\sqrt{2}cos\frac{¦Ð}{4}=4\\{y_0}=4\sqrt{2}sin\frac{¦Ð}{4}=4\end{array}\right.$£¬µÃ£ºP£¨4£¬4£©£® ¡
$\left\{\begin{array}{l}x=cos¦Á\\ y=\sqrt{3}sin¦Á\end{array}\right.£¨¦ÁΪ²ÎÊý£©⇒\frac{x^2}{1}+\frac{y^2}{3}={cos^2}¦Á+si{n^2}¦Á=1$£¬
¡ß$\frac{4^2}{1}+\frac{4^2}{3}£¾1$£¬
¡àµãPÔÚÇúÏßC ${x^2}+\frac{y^2}{3}=1$Í⣮
£¨2£©·¨1£ºÒòΪµãQÔÚÇúÏßCÉÏ£¬¹Ê¿ÉÉèµãQµÄ×ø±êΪ$£¨cos¦Á£¬\sqrt{3}sin¦Á£©$£¬
´Ó¶øµãQµ½Ö±ÏßlµÄ¾àÀëΪ $d=\frac{{|cos¦Á+\sqrt{3}sin¦Á-8|}}{{\sqrt{1+1}}}$=$\frac{{8-2cos£¨¦Á-\frac{¦Ð}{3}£©}}{{\sqrt{2}}}=4\sqrt{2}-\sqrt{2}cos£¨¦Á-\frac{¦Ð}{3}£©$£¬
µ±$cos£¨¦Á-\frac{¦Ð}{3}£©=1$ʱ£¬Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×îСֵΪ$3\sqrt{2}$£¬
µ±$cos£¨¦Á-\frac{¦Ð}{3}£©=-1$ʱ£¬Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×î´óֵΪ$5\sqrt{2}$£¬
·¨2£ºÖ±ÏßlµÄƽÐÐÏßn·½³Ì¿ÉÉèΪ£ºx+y+t=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{x^2}+\frac{y^2}{3}=1\\ x+y+t=0\end{array}\right.$µÃ 3x2+£¨x+t£©2=3£¬¼´ 4x2+2tx+t2-3=0£¬
¡÷=4t2-16£¨t2-3£©=-12t2+48=0⇒t=¡À2£¬
ÇúÏßCµÄÁ½ÇÐÏß·½³ÌΪ x+y+2=0Óëx+y-2=0£¬
Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×î´óֵΪ $d=\frac{|2-£¨-8£©|}{{\sqrt{1+1}}}=5\sqrt{2}$£¬
Qµ½Ö±ÏßlµÄ¾àÀëdµÄ×îСֵΪ $d=\frac{|-2-£¨-8£©|}{{\sqrt{1+1}}}=3\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | M⊆N | B£® | N⊆M | ||
| C£® | M=N | D£® | MÓëNÖ®¼äûÓаüº¬¹ØÏµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | $\frac{1}{2}$ | D£® | -1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù | B£® | ¢Ú | C£® | ¢Û | D£® | ¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4¦Ð | B£® | 8¦Ð | C£® | 12¦Ð | D£® | 16¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©=0 | B£® | f£¨x£©=2 | C£® | f£¨x£©=x2-1 | D£® | f£¨x£©=x-$\frac{1}{x}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com