精英家教网 > 高中数学 > 题目详情
7.已知三棱锥P-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为$\frac{\sqrt{2}}{6}$,则球O的表面积为(  )
A.B.C.12πD.16π

分析 根据题意作出图形,欲求球O的表面积,只须求球的半径r.利用截面圆的性质即可求出OO1,进而求出底面ABC上的高PD,即可计算出三棱锥的体积,从而建立关于r的方程,即可求出r,从而解决问题.

解答 解:根据题意作出图形
设球心为O,球的半径r.过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,
延长CO1交球于点D,则PD⊥平面ABC.
∵CO1=$\frac{\sqrt{3}}{3}$,
∴OO1=$\sqrt{{r}^{2}-\frac{1}{3}}$,
∴高PD=2OO1=2$\sqrt{{r}^{2}-\frac{1}{3}}$,
∵△ABC是边长为1的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$,
∴V三棱锥P-ABC=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×2$\sqrt{{r}^{2}-\frac{1}{3}}$=$\frac{\sqrt{2}}{6}$,
∴r=1.则球O的表面积为4π.
故选:A.

点评 本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点P到面ABC的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知S,A,B,C都是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=2,AB=3,BC=4,则球O的表面积等于29π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.i是虚数单位,若复数z+2i-3=3-3i,则|z|=(  )
A.5B.$\sqrt{5}$C.61D.$\sqrt{61}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的方程为x+y-8=0,曲线C的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}\right.(α为参数)$.
(1)已知极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,若点P的极坐标为$(4\sqrt{2},\frac{π}{4})$,请判断点P与曲线C的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四个全等的直角三角形围成一个大正方形和一个小正方形,若直角三角形较长的直角边为4,小正方形的面积为9.现向大正方形内随机撒一枚幸运小星星,则小星星落在小正方形内的概率为(  )
A.$\frac{8}{17}$B.$\frac{9}{17}$C.$\frac{10}{17}$D.$\frac{11}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=x3-3x+m有且只有一个零点,则实数m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{m}$、$\overrightarrow{n}$均为单位向量,且向量$\overrightarrow{m}$与$\overrightarrow{n}$反向,则$\overrightarrow{m}$•$\overrightarrow{n}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若sin$\frac{α}{2}$=-$\frac{1}{2}$,α∈[2π,3π],则α=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知AB=4,BC=2,CA=3,试求cos∠ACB.

查看答案和解析>>

同步练习册答案