一个袋中装有若干个大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.
(1)若袋中共有10个球,
①求白球的个数;
②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.
(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于,并指出袋中哪种颜色的球的个数最少.
(1) ①5 ②X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
(2)见解析
【解析】(1)①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则
P(A)=1-=,得x=5或x=14(舍去).故白球有5个.
②随机变量X的取值为0,1,2,3,
P(X=0)==;P(X=1)==;
P(X=2)==;P(X=3)==.
故X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
(2)设袋中有n个球,其中有y个黑球,
由题意得y=n,所以2y<n,2y≤n-1,故≤.
记“从袋中任意摸出2个球,至少有1个黑球”为事件B,
则P(B)=
=·+·+·
=+×≤+×=.
所以白球的个数比黑球多,白球个数多于n,红球的个数少于,故袋中红球个数最少.
【方法技巧】随机变量分布列的求法
(1)搞清随机变量每个取值对应的随机事件,思考目标事件如何用基本事件来表示,求出随机变量所有可能的值.
(2)利用对立事件和互斥事件求出取每一个值时的概率,计算必须准确无误.
(3)注意运用分布列的两条性质检验所求概率,确保正确后列出分布列.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十六选修4-2第三节练习卷(解析版) 题型:解答题
已知矩阵M=,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0),
(1)求实数a的值.
(2)求矩阵M的特征值及其对应的特征向量.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十九选修4-5第一节练习卷(解析版) 题型:解答题
已知函数f(x)=|x-1|+|x+3|.
(1)求x的取值范围,使f(x)为常数函数.
(2)若关于x的不等式f(x)-a≤0有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十三第十章第十节练习卷(解析版) 题型:选择题
已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( )
(A)=1.23x+4
(B)=1.23x+5
(C)=1.23x+0.08
(D)=0.08x+1.23
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十七选修4-4第一节练习卷(解析版) 题型:解答题
已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcosθ+3=0,
(1)求曲线C,P的直角坐标方程.
(2)设曲线C和曲线P的交点为A,B,求|AB|.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:填空题
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)= .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:选择题
设随机变量ξ的概率分布为P(ξ=i)=a()i,i=1,2,3,则a的值是( )
(A) (B) (C) (D)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com