| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
分析 根据双曲线的定义,结合|PF1|=3|PF2|,利用余弦定理,求cos∠F1PF2的值,可得sin∠F1PF2,再利用面积公式,即可得出结论.
解答 解:将双曲线方程x2-y2=2化为标准方程$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1,则a=$\sqrt{2}$,b=$\sqrt{2}$,c=2,
设|PF1|=3|PF2|=3m,则根据双曲线的定义,|PF1|-|PF2|=2a可得m=$\sqrt{2}$,
∴|PF1|=3$\sqrt{2}$,|PF2|=$\sqrt{2}$,
∵|F1F2|=2c=4,
∴cos∠F1PF2=$\frac{18+2-16}{2×3\sqrt{2}×\sqrt{2}}$=$\frac{1}{3}$
∴sin∠F1PF2=$\frac{2\sqrt{2}}{3}$,
∴S${\;}_{△{F}_{1}{PF}_{2}}$=$\frac{1}{2}×3\sqrt{2}×\sqrt{2}×\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$.
故选D.
点评 本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,三角形面积的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}-1$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com