精英家教网 > 高中数学 > 题目详情
8.四边形ABCD如图所示,已知AB=BC=CD=2,AD=2$\sqrt{3}$.
(1)求$\sqrt{3}$cosA-cosC的值;
(2)记△ABD与△BCD的面积分别是S1与S2,求S12+S22的最大值.

分析 (1)利用余弦定理,求出BD,即可求$\sqrt{3}$cosA-cosC的值;
(2)求出S12+S22的表达式,-1<cosC<$\sqrt{3}$-1,即可求S12+S22的最大值.

解答 解:(1)在△ABD中,DB=$\sqrt{16-8\sqrt{3}cosA}$,
在△BCD中,DB=$\sqrt{8-8cosC}$,
所以$\sqrt{3}$cosA-cosC=1.
(2)依题意S12=12-12cos2A,S22=4-4cos2C,
所以S12+S22=12-12cos2A+4-4cos2C=-8cos2C-8cosC+12=-8(cosC+$\frac{1}{2}$)2+14,
因为2$\sqrt{3}-2<BD<4$,所以-8cosC∈(16-8$\sqrt{3}$,16).
解得-1<cosC<$\sqrt{3}$-1,所以S12+S22≤14,当cosC=-$\frac{1}{2}$时取等号,即S12+S22的最大值为14.

点评 本题考查余弦定理的运用,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在测试中,客观题难度的计算公式为${P_i}=\frac{R_i}{N}$,其中Pi为第i题的难度,Ri为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
题号12345
考前预估难度Pi0.90.80.70.60.4
测试后,随机抽取了20名学生的答题数据进行统计,结果如下:
题号12345
实测答对人数161614144
(Ⅰ)根据题中数据,估计这240名学生中第5题的实测答对人数;
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设${P_i}^′$为第i题的实测难度,请用Pi和${P_i}^′$设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C1:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(-1,0)的直线l与曲线C1,C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC中,∠A=30°,2AB,BC分别是$2\sqrt{3}+\sqrt{11}$、$2\sqrt{3}-\sqrt{11}$的等差中项与等比中项,则△ABC的面积等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设实数a=log32,b=ln2,c=$\frac{1}{{∫}_{0}^{π}sinxdx}$,则(  )
A.b>a>cB.b>c>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(x-4)5的展开式中,含x3的项的系数为(  )
A.20B.40C.80D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在四棱锥P-ABCD中,底要ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)求二面角C-BE-D余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a为实数,函数f(x)=(x2-a)e1-x
(Ⅰ)当x≥1时y=f(x)存在斜率为2的切线,求实数a的取值范围;
(Ⅱ)当f(x)有两个极值点x1,x2(x1<x2)时,是否存在实数λ,使x2f(x1)+aλ(e${\;}^{1-{x}_{1}}$+1)≤0?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.实部为1,虚部为2的复数所对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案