【题目】函数f(x)= +lg 的定义域为( )
A.(2,3)
B.(2,4]
C.(2,3)∪(3,4]
D.(﹣1,3)∪(3,6]
【答案】C
【解析】解:要使函数有意义,则 ,
即 ,
>0等价为① 即 ,即x>3,
② ,即 ,此时2<x<3,
即2<x<3或x>3,
∵﹣4≤x≤4,
∴解得3<x≤4且2<x<3,
即函数的定义域为(2,3)∪(3,4],
故选:C
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且∠AOB= , 求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数,在同一直角坐标系中f(x)与g(x)相同的一组是( )
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是
( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB为半圆O的直径,且AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)证明:AC平分∠BAD;
(Ⅱ)求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意一个确定的二面角α﹣l﹣β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是( )
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com