精英家教网 > 高中数学 > 题目详情
14.下列函数是偶函数的是(  )
A.y=x2,x∈[0,1]B.y=x3C.y=2x2-3D.y=x

分析 利用偶函数的性质判断即可.

解答 解:A、y=x2,x∈[0,1],图象不关于y轴对称,不是偶函数;
B、f(-x)=(-x)3=-x3=-f(x),此函数为奇函数;
C、f(-x)=2×(-x)2-3=2x2-3=f(x),此函数为偶函数;
D、f(-x)=-f(x),此函数为奇函数,
故选:C.

点评 此题考查了函数奇偶性的判断,熟练掌握偶函数的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,给出下列三个不等式:$\overrightarrow{AB}$$•\overrightarrow{AC}$>0,$\overrightarrow{BA}$$•\overrightarrow{BC}$>0,$\overrightarrow{CA}$$•\overrightarrow{CB}$>0,其中,能够成立的不等式(  )
A.至多1个B.有且仅有1个C.至多2个D.至少2个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x∈R,若函数f(x)=ex-ln2,则f′(0)=(  )
A.-ln2B.1-ln2C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}+3,x>0}\\{x-1,x≤0}\end{array}\right.$,则f(1)=(  )
A.5B.0C.-5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\frac{tanα}{tanα-1}=-1$,则$\frac{sinα-3cosα}{sinα+cosα}$=(  )
A.$-\frac{5}{3}$B.3C.$-\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数是正态分布密度函数的是(  )
A.f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{\frac{{{{(x-r)}^2}}}{2σ}}}$B.f(x)=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$
C.f(x)=$\frac{1}{{2\sqrt{2}π}}{e^{\frac{{{{(x-1)}^2}}}{4}}}$D.f(x)=$\frac{1}{{\sqrt{2π}}}{e^{\frac{x^2}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,A={x|x>1},B={x|x<0},则集合(∁UA)∩(∁UB)=(  )
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(3,-2,1),$\overrightarrow{b}$=(-2,4,0),则4$\overrightarrow{a}$+2$\overrightarrow{b}$等于(  )
A.(16,0,4)B.(8,0,4)C.(8,16,4)D.(8,-16,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是线段AB,CC1的中点,∨MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1
②平面MB1P⊥平面ND1A1
③∨MB1P在底面ABCD上的射影图形的面积为定值;
④△MB1P在侧面DD1C1C上的射影图形是三角形.
其中正确的命题序号是(  )
A.B.①③C.②③D.②④

查看答案和解析>>

同步练习册答案