精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}$cos2A+1=4sin($\frac{π}{6}$+A)•sin($\frac{π}{3}$-A)
(Ⅰ)求角A的值;
(Ⅱ)若a=$\sqrt{2}$,且b≥a,求$\sqrt{2}$b-c的取值范围.

分析 (Ⅰ)由三角函数恒等变换的应用化简已知可得sin2A=1,结合范围2A∈(0,2π),可求A的值.
(Ⅱ)利用正弦定理可得b=2sinB,c=2sinC,利用三角函数恒等变换的应用化简可得$\sqrt{2}$b-c=2sin(B-$\frac{π}{4}$),结合范围0≤B-$\frac{π}{4}$<$\frac{π}{2}$,利用正弦函数的性质即可得解.

解答 (本题满分为12分)
解:(Ⅰ)∵$\sqrt{3}$cos2A+1=4sin($\frac{π}{6}$+A)•sin($\frac{π}{3}$-A)=2sin($\frac{2π}{3}$-2A),
∴$\sqrt{3}$cos2A+1=2sin($\frac{2π}{3}$-2A)=$\sqrt{3}$cos2A+sin2A,可得:sin2A=1,
∵A∈(0,π),2A∈(0,2π),
∴2A=$\frac{π}{2}$,可得:A=$\frac{π}{4}$.…6分
(Ⅱ)∵A=$\frac{π}{4}$,a=$\sqrt{2}$,
∴由$\frac{b}{sinB}=\frac{c}{sinC}$=2,得b=2sinB,c=2sinC,
∴$\sqrt{2}$b-c=2$\sqrt{2}$sinB-2sinC=2$\sqrt{2}$sinB-2sin($\frac{3π}{4}$-B)=2sin(B-$\frac{π}{4}$).
∵b≥a,
∴$\frac{π}{4}$≤B<$\frac{3π}{4}$,即0≤B-$\frac{π}{4}$<$\frac{π}{2}$,
∴$\sqrt{2}$b-c=2sin(B-$\frac{π}{4}$)∈[0,2).…12分

点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某市市民月收入ξ(单位:元)服从正态分布N(3000,σ2),且P(ξ<1000)=0.1962,则P(3000≤ξ≤5000)=(  )
A.0.3038B.0.3924C.0.6076D.0.8038

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知直三棱柱ABC-A1B1C1中,AB=AC,D为BC的中点.
(Ⅰ)求证:AD⊥平面BC1
(Ⅱ)求证:A1B∥平面AC1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知p:x2-4x+3≤0,q:f(x)=$\frac{{x}^{2}+1}{x}$存在最大值和最小值,则p是q的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=xex-x-2的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinωx-sin(ωx+$\frac{π}{3}$)(ω>0).
(1)若f(x)在[0,π]上的值域为[-$\frac{\sqrt{3}}{2}$,1],求ω的取值范围;
(2)若f(x)在[0,$\frac{π}{3}$]上单调,且f(0)+f($\frac{π}{3}$)=0,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不共线向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|$,且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为保障春节期间的食品安全,某市质量监督局对超市进行食品检查,如图所示是某品牌食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.75,则$\frac{4}{a}+\frac{1}{b}$的最小值为(  )
A.9B.$\frac{9}{2}$C.3D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD.
(2)若$cos∠BAD=\frac{1}{5}$,求几何体ABCDEF的体积.

查看答案和解析>>

同步练习册答案